边缘人工智能如今有很多应用,包括面部识别、自动驾驶汽车、可穿戴医疗设备,以及通过智能手机访问的实时交通更新等。事实表明,边缘计算使人工智能设备能够更好地预测未来并做出更明智的决定,而不需要将大量数据传输到云平台处理,这为下一代人工智能带来了无限可能。
很多企业正在考虑将边缘计算、云计算和人工智能相结合,以应对新冠疫情发生之后带来的劳动力短缺、通货膨胀、供应链不确定等各种问题。
人工智能通常部署在云平台上,在那里可以处理大量的数据,并消耗大量的计算资源。然而,数据并不都需要在云平台中存储和处理。与其相反,边缘人工智能可以更可靠、更快、更安全地在智能手机、笔记本电脑、可穿戴设备、物联设备、车辆等智能设备上处理数据,并快速促进决策。对于那些在几乎没有网络连接的地区开展业务的企业,这项技术无疑是它们的最佳选择。
边缘计算的价值不仅仅是降低延迟
如今,全球有数十亿台物联网设备(例如手机、智能电视、汽车、电脑、摄像头)正在收集和处理大量数据。尽管这些令人振奋的数字带来了巨大的优势,但它也暴露出新的弱点。边缘人工智能可以快速处理这些设备的数据,减少传输到云平台处理的数据量。此外,由于数据是在本地创建和处理的,它提供了更好的安全性和隐私性,可以有效地防止入侵。
边缘计算带来的另一个显著好处是实时分析,这在许多用例中都很明显,是许多企业采用率上升的主要驱动因素。这得益于数据在本地硬件或附近的服务器上处理、分析和存储,而不用发送到云平台。边缘计算的网关还会减少带宽,因为边缘设备只传输与计算相关的数据量,确保传输到云平台的带宽不会超负荷。
边缘人工智能计算的应用愈加广泛
虽然边缘人工智能是一项相对较新的技术,但它在各个垂直业务领域的影响力越来越大。最近备受关注的“工业4.0”正在通过在生产线的各个阶段利用人工智能和分析来改变运营方式。在边缘采用人工智能技术,将使机器能够做出明智的决策,监控部件出现的故障,并发现生产过程中的异常情况。
边缘计算在医疗保健领域的应用越来越广泛。它通过使用计算机视觉和来自其他传感器的信息,实现对病房和患者身体状况的自主监控。医疗保健专业人员可以利用人工智能在成像测试中检测心血管异常,发现骨骼错位、组织损伤和骨折,从而做出治疗选择或进行手术。
事实证明,这项技术对汽车行业来说也是一个福音。如今,汽车制造商正在使用所有类型车辆收集的大量数据来识别和检测道路上的物体,从而提高乘客的安全性和舒适性。边缘人工智能计算支持的实时处理数据有助于避免与行人或其他车辆相撞。
技术创新正在推动各个领域的业务发展,其中包括能源的智能预测、制造业的未来预测和零售的虚拟助手。智能手推车和智能结账系统等自主购物系统使零售商能够利用嵌入式视觉改善消费者体验。此外,视频分析解决方案在建筑和建筑行业的采用率不断提高,主流市场玩家正面临更多的创收机会。
边缘人工智能计算领域的投资持续增长
在市场竞争中取得领先的唯一方法就是主动出击并投资技术。边缘人工智能如此重要,以至于像谷歌、IBM和亚马逊这样的科技巨头都在大力投资开发他们的边缘计算设备。
中国的企业也很积极,最近的边缘计算专利申请数量证明了中国在这方面的快速创新。5G的迅速普及,以及对智能电网、智能网联汽车等应用场景的追求推动这方面的创新。许多中人工智能处理器初创公司正在筹集资金,以进入尖端人工智能硬件市场。
国际上这方面的创业创新也如火如荼。例如荷兰芯片生产商Axelera AI B.V.在一轮早期融资中筹集了2700万美元,以开发一种支撑数据中心以外或网络边缘人工智能应用的芯片。另一家名为Spot AI的公司最近也筹集了4000万美元,用于开发更智能的监控摄像头技术。
这一切还只是开始,物联网设备的扩展、5G技术的普及、并行计算的改进和神经网络的商业成熟,都将促进边缘人工智能和机器学习基础设施的构建。
总之,尽管边缘人工智能仍处于初级阶段,但其未来发展和潜在用途是无限的。企业可以将边缘人工智能集成到运营运维的多种流程中,从实时数据分析应用中实现降本提质增效的业务价值,同时加强安全和隐私,减少网络延迟,降低带宽成本。
以上是边缘人工智能的应用和价值并不“边缘”的详细内容。更多信息请关注PHP中文网其他相关文章!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver Mac版
视觉化网页开发工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver CS6
视觉化网页开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版