搜索
首页科技周边人工智能英伟达用AI设计GPU算术电路,面积比最先进EDA减少25%,速度更快、更加高效

图片

大量的算术电路阵列为英伟达 GPU 提供了动力,以实现前所未有的 AI、高性能计算和计算机图形加速。因此,改进这些算术电路的设计对于提升 GPU 性能和效率而言至关重要。如果 AI 学习设计这些电路会怎么样呢?在近期英伟达的论文《PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning》中,研究者证明了AI不仅可以从头开始设计这些电路,而且AI设计的电路比最先进电子设计自动化(EDA)工具设计的电路更小、更快。

图片

论文地址:https://arxiv.org/pdf/2205.07000.pdf

最新的英伟达Hopper GPU架构中拥有近13000个AI设计的电路实例。下图 1 左 PrefixRL AI设计的64b加法器电路比图1右最先进EDA工具设计的电路小25%。

图片

电路设计概览

计算机芯片中的算术电路是由逻辑门网络(如NAND、NOR和XOR)和电线构成。理想的电路应具有以下属性:

  • 小:更小的面积,更多电路可以封装在芯片上;
  • 快:更低的延迟,提高芯片的性能;
  • 更低功耗。

在英伟达的这项研究中,研究者关注电路面积和延迟。他们发现,功耗与感兴趣电路的面积密切相关。电路面积和延迟往往是相互竞争的属性,因此希望找到有效权衡这些属性的设计的帕累托边界。简言之,研究者希望每次延迟时电路面积是最小的。

因此,在PrefixRL中,研究者专注于一类流行的算术电路——并行前缀电路。GPU中的各种重要电路如加速器、增量器和编码器等都是前缀电路,它们可以在更高级别上被定为为前缀图。

那么问题来了:AI智能体能设计出好的前缀图吗?所有前缀图的状态空间是很大的O(2^n^n),无法使用蛮力方法进行探索。下图2为具有4b电路实例的PrefixRL的一次迭代。

图片

研究者使用电路生成器将前缀图转换为一个带有电线和逻辑门的电路。接下来,这些生成的电路通过一个物理综合工具来优化,该工具使用门尺寸、复制和缓冲器插入等物理综合优化。

由于这些物理综合优化,最终的电路属性(延迟、面积和功率)不会直接从原始前缀图属性(如电平和节点数)转换而来。这就是为什么AI智能体学习设计前缀图但又要对从前缀图中生成的最终电路的属性进行优化。

研究者将算术电路设计视为一项强化学习(RL)任务,其中训练一个智能体优化算术电路的面积和延迟属性。对于前缀电路,他们设计了一个环境,其中RL智能体可以添加或删除前缀图中的节点,然后执行如下步骤:

  1. 前缀图被规范化以始终保持正确的前缀和计算;
  2. 从规范化的前缀图中生成电路;
  3. 使用物理综合工具对电路进行物理综合优化;
  4. 测量电路的面积和延迟特性。

在如下动图中,RL智能体通过添加或删除节点来一步步地构建前缀图。在每一步上,该智能体得到的奖励是对应电路面积和延迟的改进。

图片

原图为可交互版本。

完全卷积Q学习智能体

研究者采用Q学习(Q-learning)算法来训练智能体电路设计。如下图3所示,他们将前缀图分解成网格表示,其中网格中的每个元素唯一地映射到前缀节点。这种网格表示用于 Q 网络的输入和输出。输入网格中的每个元素表示节点是否存在。输出网格中的每个元素代表添加或删除节点的 Q 值。

研究者采用完全卷积神经网络架构,因为Q学习智能体的输入和输出都是网格表示。智能体分别预测面积和延迟属性的 Q 值,因为面积和延迟的奖励在训练期间是单独可观察的。

图片

图3:4b前缀图表示(左)以及完全卷积Q学习智能体架构(右)。

Raptor进行分布式训练

PrefixRL需要大量计算,在物理模拟中,每个GPU需要256个CPU,而训练64b任务则需要超过32000个GPU小时。此次英伟达开发了一个内分布式强化学习平台Raptor,该平台充分利用了英伟达硬件优势,从而可以进行这种工业级别的强化学习(如下图4)。

Raptor 能够提高训练模型的可扩展性和训练速度,例如作业调度、自定义网络和 GPU 感知数据结构。在 PrefixRL 的上下文中,Raptor 使得跨 CPU、GPU 和 Spot 实例的混合分配成为可能。这个强化学习应用程序中的网络是多种多样的,并且受益于以下几点:

  • Raptor 在 NCCL 之间切换以进行点对点传输,从而将模型参数直接从学习器 GPU 传输到推理 GPU;
  • Redis 用于异步和较小的消息,例如奖励或统计信息;
  • 对于 JIT 编译的 RPC,用于处理大容量和低延迟的请求,例如上传经验数据。

最后,Raptor 提供了 GPU 感知数据结构,例如具有多线程服务的重放缓冲器,以接收来自多个worker的经验,并行批处理数据并将其预先载入到 GPU 上。

下图 4 显示PrefixRL框架支持并发训练和数据收集,并利用 NCCL 有效地向参与者(下图中的actor)发送最新参数。

图片

图4:研究者采用Raptor进行解耦并行训练和奖励计算,以克服电路合成延迟。

奖励计算

研究者采用权衡权重 w (范围为[0,1])来组合区域和延迟目标。他们训练具有不同权重的各种智能体以获得帕累托边界,从而平衡面积、延迟之间的权衡。

RL 环境中的物理综合优化可以生成各种解决方案来权衡面积和延迟。研究者使用与训练特定智能体相同的权衡权重来驱动物理综合工具。

在奖励计算的循环中执行物理综合优化具有以下优点:

  • RL智能体学习直接优化目标技术节点和库的最终电路属性;
  • RL智能体在物理综合过程中包含目标算法电路的周边逻辑,从而共同优化目标算法电路及其周边逻辑的性能。

然而,进行物理综合是一个缓慢的过程(64b加法器~35秒),这可能大大减慢RL的训练和探索。

研究者将奖励计算与状态更新解耦,因为智能体只需要当前的前缀图状态就可以采取行动,而不需要电路合成或之前的奖励。得益于Raptor,他们可以将冗长的奖励计算转移到CPU worker池中并行执行物理综合,而actor智能体无需等待就能在环境中执行。

当CPU worker返回奖励时,转换就可以嵌入重放缓冲器。综合奖励会被缓存,以避免再次遇到某个状态时进行冗余计算。

结果及展望

下图5展示了使用PrefixRL设计的64b加法器电路、以及来自最先进EDA工具的帕累托支配加法器电路的面积和延迟情况。

最好的 PrefixRL 加法器在相同延迟下实现的面积比 EDA 工具加法器低25%。这些在物理综合优化后映射到Pareto最优加法器电路的前缀图具有不规则的结构。

图片

图5:PrefixRL设计的算术电路比最先进的EDA工具设计的电路更小和更快。

(左)电路架构;(右)对应的64b加法器电路特性图

据了解,这是首个使用深度强化学习智能体来设计算术电路的方法。英伟达构想了一种蓝图:希望这种方法可以将 AI 应用于现实世界电路设计问题,构建动作空间、状态表示、RL 智能体模型、针对多个竞争目标进行优化,以及克服缓慢的奖励计算过程。

以上是英伟达用AI设计GPU算术电路,面积比最先进EDA减少25%,速度更快、更加高效的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?拥抱面部是否7B型号奥林匹克赛车击败克劳德3.7?Apr 23, 2025 am 11:49 AM

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

4个新的双子座功能您可以错过4个新的双子座功能您可以错过Apr 23, 2025 am 11:48 AM

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

Camunda为经纪人AI编排编写了新的分数Camunda为经纪人AI编排编写了新的分数Apr 23, 2025 am 11:46 AM

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

策划的企业AI体验是否有价值?策划的企业AI体验是否有价值?Apr 23, 2025 am 11:45 AM

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

如何为抹布找到最佳的多语言嵌入模型?如何为抹布找到最佳的多语言嵌入模型?Apr 23, 2025 am 11:44 AM

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

麝香:奥斯汀的机器人需要每10,000英里进行干预麝香:奥斯汀的机器人需要每10,000英里进行干预Apr 23, 2025 am 11:42 AM

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

AI震惊的枢轴:从工作工具到数字治疗师和生活教练AI震惊的枢轴:从工作工具到数字治疗师和生活教练Apr 23, 2025 am 11:41 AM

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将

公司竞争AI代理的采用公司竞争AI代理的采用Apr 23, 2025 am 11:40 AM

AI代理商的兴起正在改变业务格局。 与云革命相比,预计AI代理的影响呈指数增长,有望彻底改变知识工作。 模拟人类决策的能力

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),