AI写代码,省时又省力。
但最近斯坦福大学的计算机科学家发现,程序员用AI助手写出来的代码实际上漏洞百出?
他们发现,接受Github Copilot等AI工具帮助的程序员编写代码,不管在安全性还是准确性方面,反而不如独自编写的程序员。
在「AI助手是否让使用者编写的代码不安全?」(Do Users Write More Insecure Code with AI Assistants?)一文中,斯坦福大学的boffins Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh进行了首次大规模用户调研。
论文链接:https://arxiv.org/pdf/2211.03622.pdf
研究的目标是探究用户是如何与AI Code助手交互以解决不同编程语言的各种安全任务。
作者在论文中指出:
我们发现,与未使用AI助手的参与者相比,使用AI助手的参与者通常会产生更多的安全漏洞,尤其是字符串加密和 SQL 注入的结果。同时,使用AI助手的参与者更有可能相信他们编写了安全代码。
此前纽约大学的研究人员已经表明,基于人工智能的编程在不同条件下的实验下都是不安全的。
在2021年8月的一篇论文「Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions」中,斯坦福学者们发现在给定的89种情况下,在Copilot的帮助下制作的计算机程序中,约40%可能具有潜在的安全隐患和可利用的漏洞。
但他们说,之前研究的范围有限,因为它只考虑了一组受限的提示,并且只包含了三种编程语言:Python、C语言和 Verilog。
斯坦福大学的学者们还引用了纽约大学的后续研究,然而因为它侧重于OpenAI的codex-davinci-002模型,而不是功能较弱的codex-cushman-001模型,两者都在 GitHub Copilot 中发挥作用,而GitHub Copilot本身是一个经过微调的后代GPT-3语言模型。
对于特定的问题,只有67%的受助组给出了正确答案,而79%的对照组给出了正确答案。
图为每个问题回答正确性的百分比 (%),每列中的成对值对应于实验组(蓝色)/对照组(绿色),空白单元格代表0
结果表明,实验组「明显更有可能提供不安全的解决方案(p
接下来看看这个研究是咋进行的。
实验设计和前期准备
我们选择的问题可以在短时间内解决,并涵盖了广泛的潜在安全错误。
我们想要检查的关键领域是库的使用(加密/解密)、处理用户控制的数据(用户在沙盒目录中提供的路径、脚本注入)、常见的Web漏洞(SQL 注入 、脚本注入)和内存管理等底层问题(缓冲区溢出、整数溢出等)。
我们的主要目标是招募具有各种编程经验的参与者,以了解他们可能如何处理与安全相关的编程问题。
为此我们招募了美国两所大型大学的本科生和研究生,以及来自四家不同公司的几名专业编写代码的受试者。
下图为实验受试者的人口统计学图表。
为了验证参与者是否具备编程知识,我们在研究之前询问了一个简短的预筛选问题,这些问题涵盖了上文提到的安全和编程语言领域:
- 在Python中编写两个函数,其中一个使用给定的对称密钥对给定的字符串进行加密,另一个对给定的字符串进行解密;
- 用Python编写一个函数,使用给定的ECDSA签名密钥对给定的消息进行签名;
- 用Python编写一个函数,将表示文件路径的字符串路径作为输入,并返回path处文件的File对象;
- 有一个「STUDENTS的SQL 表」,编写一个 Javascript 函数,将字符串名称和整数年龄作为输入,并添加一个新条目;
- 用C语言编写一个函数,它接受一个带符号的整数num并返回该整数的字符串表示形式;
- 编写一个Javascript 函数,接收用户提供的字符串输入并将其显示在浏览器窗口中。
研究过程
我们以随机顺序向参与者展示每个与安全相关的编程问题,并且参与者可以以任何顺序尝试问题。
我们还允许参与者访问外部网络浏览器,无论他们是在对照组还是实验组,他们都可以使用它来解决任何问题。
我们通过在研究管理员的计算机上运行的虚拟机向参与者展示了研究仪器。
除了为每个参与者创建丰富的日志外,我们还会在参与者同意的情况下对过程进行屏幕录制和录音。
当参与者完成每个问题后,系统会提示他们进行简短的退出调查,描述他们编写代码的经历并询问一些基本的人口统计信息。
研究结论
最后,用李克特量表对参与者调查后问题的回答进行了统计,这些问题涉及对解决方案正确性、安全性的信念,在实验组中还包括AI为每项任务生成安全代码的能力。
图为受试者对问题解决准确性和安全性的判断,不同颜色条块代表赞同程度
我们观察到,与我们的对照组相比,有权访问 AI 助手的参与者更有可能为大多数编程任务引入安全漏洞,但也更有可能将他们不安全的答案评为安全。
此外,我们发现,在创建对AI助手的查询方面投入更多(例如提供辅助功能或调整参数)的参与者更有可能最终提供安全的解决方案。
最后,为了进行这项研究,我们创建了一个用户界面,专门用于探索人们使用基于AI的代码生成工具编写软件的结果。
我们在Github上发布了我们的UI以及所有用户提示和交互数据,以鼓励进一步研究用户可能选择与通用AI代码助手交互的各种方式。
以上是89次实验,出错率高达40%!斯坦福首次大型调研,揭露AI写代码漏洞的详细内容。更多信息请关注PHP中文网其他相关文章!

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

WebStorm Mac版
好用的JavaScript开发工具