搜索
首页科技周边人工智能ICRA 2022杰出论文:把自动驾驶2D图像转成鸟瞰图,模型识别准确率立增15%

对于自动驾驶中的许多任务来说,从自上而下、地图或鸟瞰 (BEV) 几个角度去看会更容易完成。由于许多自动驾驶主题被限制在地平面,所以俯视图是一种更实用的低维表征,对于导航也更加理想,能够捕获相关障碍和危险。对于像自主驾驶这样的场景,语义分割的 BEV 地图必须作为瞬时估计生成,以处理自由移动的对象和只访问一次的场景。

要想从图像推断 BEV 地图,就需要确定图像元素与它们在环境中的位置之间的对应关系。此前的一些研究以稠密深度图和图像分割地图指导这种转换过程,还有研究延展了隐式解析深度和语义的方法。一些研究则利用了相机的几何先验,但并没有明确地学习图像元素和 BEV 平面之间的相互作用。

在近期一篇论文中,来自萨里大学的研究者引入了注意力机制,将自动驾驶的 2D 图像转换为鸟瞰图,使得模型的识别准确率提升了 15%。这项研究在不久前落幕的 ICRA 2022 会议上获得了杰出论文奖。

图片

论文链接:https://arxiv.org/pdf/2110.00966.pdf

图片

与以往的方法不同,这项研究将 BEV 的转换视为一个「Image-to-World」的转换问题,其目标是学习图像中的垂直扫描线(vertical scan lines)和 BEV 中的极射线(polar ray)之间的对齐。因此,这种射影几何对网络来说是隐式的。

在对齐模型上,研究者采用了 Transformer 这种基于注意力的序列预测结构。利用其注意力机制,研究者明确地建模了图像中垂直扫描线与其极性 BEV 投影之间的成对相互作用。Transformer 非常适合图像到 BEV 的转换问题,因为它们可以推理出物体、深度和场景照明之间的相互依赖关系,以实现全局一致的表征。

研究者将基于 Transformer 的对齐模型嵌入到一个端到端学习公式中,该公式以单目图像及其固有矩阵为输入,然后预测静态和动态类的语义 BEV 映射。

本文构建了一个体系结构,有助于从对齐模型周围的单目图像预测语义 BEV 映射。如下图 1 所示,它包含三个主要组成部分:一个标准的 CNN 骨干,用于提取图像平面上的空间特征;编码器 - 解码器 Transformer 将图像平面上的特征转换为 BEV;最后一个分割网络将 BEV 特征解码为语义地图。

ICRA 2022杰出论文:把自动驾驶2D图像转成鸟瞰图,模型识别准确率立增15%图片

具体而言,这项研究的主要贡献在于:

  • (1)用一组 1D 序列 - 序列的转换从一幅图像中生成一个 BEV 图;
  • (2)构建了一个受限制的数据高效的 Transformer 网络,具备空间感知能力;
  • (3)公式和语言领域单调注意力的结合表明,对于精确的映射来说,知道图像中一个点下面是什么比知道它上面是什么更重要,尽管两者都使用会导致最佳性能;
  • (4)展示了轴向注意力如何通过提供时间意识来提高性能,并在三个大规模数据集上展示了最新的结果。

实验结果

在实验中,研究者做了几项评估:将图像到 BEV 的转换作为 nuScenes 数据集上的转换问题评估其效用;在单调注意力中消融回溯方向,评估长序列水平上下文的效用和极位置信息(polar positional information)的影响。最后,将该方法与 nuScenes 、Argoverse 和 Lyft 数据集的 SOTA 方法进行比较。

消融实验

如下表 2 的第一部分所示,研究者比较了软注意力 (looking both ways)、图像底部回溯(looking down) 的单调注意力、图像顶部回溯 (looking up) 的单调注意力。结果表明,从图像中的一个点向下看比向上看要好。

沿着局部的纹理线索——这与人类在城市环境中试图确定物体距离的方法是一致的,我们会利用物体与地平面相交的位置。结果还表明,两个方向的观察都进一步提高了精度,使深度推理更具有识别力。

图片

长序列水平上下文的效用。此处的图像 - BEV 转换是作为一组 1D 序列 - 序列转换进行的,因此一个问题是,当整个图像被转换成 BEV 时会发生什么。考虑到生成注意力地图所需的二次计算时间和记忆力,这种方法的成本高得令人望而却步。然而,可以通过在图像平面特征上应用水平轴向注意力,取得近似使用整个图像的上下文效益。借助通过图像行的轴向注意力,垂直扫描线中的像素现在具备了长距离的水平上下文,之后像以前一样,通过在 1D 序列之间转换来提供长距离的垂直上下文。

如表 2 中间部分所示,合并长序列水平上下文并不会使模型受益,甚至略有不利影响。这说明了两点:首先,每个转换后的射线并不需要输入图像整个宽度的信息,或者更确切地说,比起已经通过前端卷积聚合的上下文,长序列上下文并没有提供任何额外的好处。这表明,使用整个图像执行转换,不会让模型精度提高以至超过 baseline 约束公式;此外,引入水平轴向注意力导致的性能下降意味着使用注意力训练图像宽度的序列的困难,可以看出,使用整个图像作为输入序列的话,会更难训练。

Polar-agnostic vs polar-adaptive Transformers:表 2 最后一部分比较了 Po-Ag 与 Po-Ad 的变体。一个 Po-Ag 模型没有极化位置信息,图像平面的 Po-Ad 包括添加到 Transformer 编码器中的 polar encodings,而对于 BEV 平面,这些信息会加入到解码器中。在任何一个平面上添加 polar encodings 都比在不可知模型上添加更有益处,其中动态类的增加最多。将它添加到两个平面会进一步强化这一点,但对静态类的影响最大。

和 SOTA 方法的对比

研究者将本文方法与一些 SOTA 方法进行了比较。如下表 1 所示,空间模型的表现优于目前压缩的 SOTA 方法 STA-S ,平均相对改善 15% 。在更小的动态类上,改善更加显著,公共汽车、卡车、拖车和障碍物的检测准确度都增加了相对 35-45% 。

图片

下图 2 中得到的定性结果也支持了这一结论,本文模型显示出更大的结构相似性和更好的形状感。这种差异可以部分归因于用于压缩的全连接层(FCL) : 当检测小而遥远的物体时,图像的大部分是冗余的上下文。

图片

此外,行人等物体往往部分被车辆挡住。在这种情况下,全连接层将倾向于忽略行人,而是保持车辆的语义。在这里,注意力方法展示出了它的优势,因为每个径向深度都可以独立地注意到图像ーー如此,更深的深度可以使行人的身体可见,而此前的深度只可以注意到车辆。

下表 3 中 Argoverse 数据集上的结果展示了类似的模式,其中本文方法对比 PON [8]提高了 30% 。

图片

如下表 4 所示,本文方法在 nuScenes 和 Lyft 上的表现优于 LSS [9]和 FIERY [20]。在 Lyft 上进行真正的对比是不可能的,因为它没有规范的 train/val 分割,而且无法获得 LSS 所使用的分割。

图片

更多研究细节,可参考原论文。

以上是ICRA 2022杰出论文:把自动驾驶2D图像转成鸟瞰图,模型识别准确率立增15%的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
META的新AI助手:生产力助推器还是时间下沉?META的新AI助手:生产力助推器还是时间下沉?May 01, 2025 am 11:18 AM

Meta携手Nvidia、IBM和Dell等合作伙伴,拓展了Llama Stack的企业级部署整合。在安全方面,Meta推出了Llama Guard 4、LlamaFirewall和CyberSecEval 4等新工具,并启动了Llama Defenders计划,以增强AI安全性。此外,Meta还向10个全球机构(包括致力于改善公共服务、医疗保健和教育的初创企业)发放了总额150万美元的Llama Impact Grants。 由Llama 4驱动的全新Meta AI应用,被设想为Meta AI

80%的Zers将嫁给AI:研究80%的Zers将嫁给AI:研究May 01, 2025 am 11:17 AM

公司开创性的人类互动公司Joi AI介绍了“ AI-Iatsionship”一词来描述这些不断发展的关系。 Joi AI的关系治疗师Jaime Bronstein澄清说,这并不是要取代人类C

AI使互联网的机器人问题变得更糟。这家耗资20亿美元的创业公司在前线AI使互联网的机器人问题变得更糟。这家耗资20亿美元的创业公司在前线May 01, 2025 am 11:16 AM

在线欺诈和机器人攻击对企业构成了重大挑战。 零售商与机器人ho积产品,银行战斗帐户收购和社交媒体平台与模仿者的斗争。 AI的兴起加剧了这个问题,Rende

卖给机器人:将创造或破坏业务的营销革命卖给机器人:将创造或破坏业务的营销革命May 01, 2025 am 11:15 AM

AI代理人有望彻底改变营销,并可能超过以前技术转变的影响。 这些代理代表了生成AI的重大进步,不仅是处理诸如chatgpt之类的处理信息,而且还采取了Actio

计算机视觉技术如何改变NBA季后赛主持人计算机视觉技术如何改变NBA季后赛主持人May 01, 2025 am 11:14 AM

人工智能对关键NBA游戏4决策的影响 两场关键游戏4 NBA对决展示了AI在主持仪式中改变游戏规则的角色。 首先,丹佛的尼古拉·乔基奇(Nikola Jokic)错过了三分球,导致亚伦·戈登(Aaron Gordon)的最后一秒钟。 索尼的鹰

AI如何加速再生医学的未来AI如何加速再生医学的未来May 01, 2025 am 11:13 AM

传统上,扩大重生医学专业知识在全球范围内要求广泛的旅行,动手培训和多年指导。 现在,AI正在改变这一景观,克服地理局限性并通过EN加速进步

Intel Foundry Direct Connect 2025的关键要点Intel Foundry Direct Connect 2025的关键要点May 01, 2025 am 11:12 AM

英特尔正努力使其制造工艺重回领先地位,同时努力吸引无晶圆厂半导体客户在其晶圆厂制造芯片。为此,英特尔必须在业界建立更多信任,不仅要证明其工艺的竞争力,还要证明合作伙伴能够以熟悉且成熟的工作流程、一致且高可靠性地制造芯片。今天我听到的一切都让我相信英特尔正在朝着这个目标前进。 新任首席执行官谭立柏的主题演讲拉开了当天的序幕。谭立柏直率而简洁。他概述了英特尔代工服务的若干挑战,以及公司为应对这些挑战、为英特尔代工服务的未来规划成功路线而采取的措施。谭立柏谈到了英特尔代工服务正在实施的流程,以更以客

AI出了问题吗?现在在那里为此保险AI出了问题吗?现在在那里为此保险May 01, 2025 am 11:11 AM

全球专业再保险公司Chaucer Group和Armilla AI解决了围绕AI风险的日益严重的问题,已联手引入了新型的第三方责任(TPL)保险产品。 该政策保护业务不利

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具