据外媒Tech Xplore报道,麻省理工学院的研究人员最近开发了一种叫做EquBind的新模型,这个模型可以提前预测新蛋白质分子的结构,提升药物开发的效率。
目前这项技术已经得到了业界内的认可,阐述这项技术的论文也将在7月被国际机器学习会议(ICML)会议接收。
一、速度提升1200倍,EquBind模型能迅速筛选类药物分子
目前,药物研发是一件漫长而又昂贵的事情。其中最主要的原因就是开发药物的成本十分昂贵。这种成本不仅包括数十亿美元的资金投入,还包括长达数十年的研究时间。
而且在研发的过程中,90%的药物都会因为无效或副作用太多而研发失败,只有10%的药物能够顺利通过食品和药物管理局的检查,被批准上市。
因此,制药公司会提高研发成功药品的价格,来弥补研发失败药品造成的损失,所以目前有些药物的价格居高不下。
▲一些蛋白质分子结构
如果研究人员想要进行药物开发,就要先找到有开发潜力的类药物分子(drug-like molecules)。药物研发进程缓慢还有另一个重要的原因,那就是现存的类药物分子数量庞大。数据显示,目前现存的类药物分子多达1016种,这个数字远远超出了现有的分子计算模型的计算上限。
为了处理数据如此庞大的分子,加快药物开发的进程,麻省理工学院电子工程和计算机科学系的研一学生Hannes St rk开发了一种叫做“EquBind”的几何深度学习模型。EquBind比现存最快的分子计算对接模型运行速度快1200倍,能够更快地找到类药物分子。
二、EquBind模型能精准预测蛋白质结构,提升药物研发效率
目前大多数传统的分子计算对接模型都是通过一种叫做“配体-蛋白质”(ligand-to-protein binding)的方法寻找类药物分子。具体而言,模型需要先接收大量的样本分子,然后让配体与各种分子进行结合,然后模型再对不同分子进行评分,再以最后的排名来筛选出最合适的分子。但是这种做法流程繁复,模型寻找类药物分子的效率较低。
Hannes St rk对这个过程做了一个形象的比喻,他说:“以前的典型的‘配体-蛋白质’方法就好像是试图让模型把钥匙插入有很多钥匙孔的锁,模型要花费大量的时间为钥匙和每一个锁孔的适配度打分,再选出最合适的那个。”
他继续解释道:“而EquBind可以跳过最花费时间的步骤,可以在遇到新分子时提前预测最合适的‘锁孔’,这就是所谓的‘盲配对’(blind docking)。EquBind有内置的几何推理算法,能够帮助模型学习分子的基本结构。这个算法可以让EquBind在遇到新的分子时直接预测出最合适的位置,而不用花费大量的时间尝试不同的位置并打分。”
▲麻省理工学院
三、EquBind模型已在业界成功应用,作者期待更多反馈
这个模型引起了治疗公司Relay的首席数据官帕特·沃尔特斯(Pat Walters)的注意。沃尔斯特建议Hannes St rk的研究小组用这种模型来进行用于治疗肺癌、白血病和胃肠道肿瘤的药物开发。通常而言,用于这些领域药物的蛋白质配体很难用大多数传统的方法对接,但是EquBind却能让它们成功对接。
▲两种治疗肺癌的抑制剂药物
沃尔特斯说:“EquBind为蛋白质对接问题提供了一种独特的解决方案,它解决了结构预测和绑定位点识别等问题。这种方法可以很好地利用数千种公开的晶体结构信息,EquBind可能会以新的方式影响这个领域。”
发表这项技术的论文将在7月被国际机器学习会议(ICML)接收,该论文的作者Hannes St rk表示:“我很期待能在这次会议上收到一些关于EquBind模型的改进意见。”
结语:AI与制药适配度极佳,发展势头正盛
AI制药是一个2020年才走进公众视野的新兴领域。
制药领域是一个天然的AI场景。新药研发的长周期、高成本、低成功率,给AI留下了庞大的用武之地:机器可以自主学习数据、挖掘数据,总结归纳专家经验外的药物研发规律,继而优化药物研发流程中的各个环节,这不仅可以提升药物研发效率与成功率,还有望降低研发费用和试错成本。
因为这样的特性和发展潜力,目前AI制药势头正盛。但也有业内人士唱衰,说AI在制药过程中扮演的终归只是辅助角色,绕不开行业固有的流程和机制,不可能用两三年的时间做完十年的事。
但是整体而言,目前AI制药领域还是不断有新的技术突破,发展蒸蒸日上。
以上是效率提升1200倍!麻省理工开发AI制药新模型的详细内容。更多信息请关注PHP中文网其他相关文章!

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!