AI面部识别领域又开辟新业务了?
这次,是鉴别二战时期老照片里的人脸图像。
近日,来自谷歌的一名软件工程师Daniel Patt 研发了一项名为N2N(Numbers to Names)的 AI人脸识别技术,它可识别二战前欧洲和大屠杀时期的照片,并将他们与现代的人们联系起来。
用AI寻找失散多年的亲人
2016年,帕特在参观华沙波兰裔犹太人纪念馆时,萌生了一个想法。
这一张张陌生的脸庞,会不会与自己存在血缘的联系?
他的祖父母/外祖父母中有三位是来自波兰的大屠杀幸存者,他想帮助祖母找到被纳粹杀害的家人的照片。
二战时期,由于波兰裔犹太人众多,且被关押在不同集中营,许多都下落不明。
仅仅通过一张发黄的照片,很难辨别其中的人脸是谁,更别提找到自己失落的亲人。
于是,他回到家中,立马把这个想法转化为现实。
该软件最初的设想是通过数据库收集人脸的图像信息,并利用人工智能算法帮助匹配相似度最高的前十个选项。
其中大部分的图像数据来自美国大屠杀纪念馆(The US Holocaust Memorial Museum),此外还有超过一百万张图像来自全国各地的数据库。
用户只需选择电脑文件中的图像,点击上传,系统便会自动筛选出匹配图最高的前十个选项。
另外,用户还可以点击源地址查看该图片的年份、地点、藏馆等信息。
有个槽点是,如果输入现代的人物图像,检索结果也可能会很离谱。
结果就是这?(黑人问号)
总之就是系统功能还需要完善。
此外,Patt还与谷歌的其他软件工程师和数据科学家团队合作,旨在提高搜索的范围与准确度。
由于脸部识别系统存在隐私泄露的风险,Patt表示,「我们不对身份作出任何评价, 我们只负责用相似度分数呈现结果,并让用户自己去判断」。
AI面部识别技术的发展
那么这项技术是如何对人脸进行识别的呢?
最初,人脸识别技术还得从「如何判断检测的图像是一张脸」开始。
2001年,计算机视觉研究人员 Paul Viola 和 Michael Jones 提出了一个框架,以高精度实时检测人脸。
这个框架可基于训练模型来理解「什么是人脸,什么不是人脸」。
训练完成后,模型会提取特定特征,然后将这些特征存储在文件中,以便可以将新图像中的特征与之前存储的特征在各个阶段进行比较。
为了帮助确保准确性,算法需要在包含「数十万正负图像的大型数据集」上进行训练,从而提高算法确定图像中是否有人脸及其位置的能力。
如果所研究的图像通过了特征比较的每个阶段,则已检测到人脸并且可以继续操作。
尽管 Viola-Jones 框架在实时应用程序中用于识别人脸精确度很高,但它存在一定的局限性。
例如,如果人脸戴上口罩,或者如果一张脸没有正确定向,则该框架可能无法工作。
为帮助消除 Viola-Jones 框架的缺点并改进人脸检测,他们又开发了其他算法。
如基于区域的卷积神经网络 (R-CNN) 和单镜头检测器 (SSD)来帮助改进流程。
卷积神经网络 (CNN) 是一种用于图像识别和处理的人工神经网络,专门用于处理像素数据。
R-CNN 在 CNN 框架上生成区域提议,以对图像中的对象进行定位和分类。
虽然基于区域提议网络的方法(如 R-CNN)需要两个镜头——一个用于生成区域提议,另一个用于检测每个提议的对象——但 SSD 只需要一个镜头来检测图像中的多个对象。因此,SSD 明显快于 R-CNN。
近年来,深度学习模型驱动的人脸识别技术,其优势显著优于传统的计算机视觉方法。
早期的人脸识别多采用传统机器学习算法,研究关注的焦点更多集中在如何提取更有鉴别力的特征上,以及如何更有效的对齐人脸。
随着研究的深入,传统机器学习算法人脸识别在二维图像上的性能提升逐渐到达瓶颈。
人们开始转而研究视频中的人脸识别问题,或者结合三维模型的方法去进一步提升人脸识别的性能,而少数学者开始研究三维人脸的识别问题。
在最出名的 LFW 公开库上,深度学习算法一举突破了传统机器学习算法在二维图像上人脸识别性能的瓶颈,首次将识别率提升到了 97% 以上。
即利用「CNN 网络建立的高维模型」 ,直接从输入的人脸图像上提取有效的鉴别特征,直接计算余弦距离来进行人脸识别。
人脸检测已经从基本的计算机视觉技术发展到机器学习 (ML) 的进步,再到日益复杂的人工神经网络 (ANN) 和相关技术,结果是持续的性能改进。
现在,它作为许多关键应用程序的第一步发挥着重要作用——包括面部跟踪、面部分析和面部识别。
二战期间,中国也遭受了战争的创伤,许多当时照片中的人物早已无法辨别。
爷爷奶奶一辈的曾遭受战争创伤的人们,有许多亲人朋友都下落不明。
这项技术的研发或许将帮助人们揭开尘封的岁月,为过去的人们寻找一些慰藉。
参考资料:https://www.timesofisrael.com/google-engineer-identifies-anonymous-faces-in-wwii-photos-with-ai-facial-recognition/
以上是用AI寻找大屠杀后失散的亲人!谷歌工程师研发人脸识别程序,可识别超70万张二战时期老照片的详细内容。更多信息请关注PHP中文网其他相关文章!

拥抱Face的OlympicCoder-7B:强大的开源代码推理模型 开发以代码为中心的语言模型的竞赛正在加剧,拥抱面孔与强大的竞争者一起参加了比赛:OlympicCoder-7B,一种产品

你们当中有多少人希望AI可以做更多的事情,而不仅仅是回答问题?我知道我有,最近,我对它的变化感到惊讶。 AI聊天机器人不仅要聊天,还关心创建,研究

随着智能AI开始融入企业软件平台和应用程序的各个层面(我们必须强调的是,既有强大的核心工具,也有一些不太可靠的模拟工具),我们需要一套新的基础设施能力来管理这些智能体。 总部位于德国柏林的流程编排公司Camunda认为,它可以帮助智能AI发挥其应有的作用,并与新的数字工作场所中的准确业务目标和规则保持一致。该公司目前提供智能编排功能,旨在帮助组织建模、部署和管理AI智能体。 从实际的软件工程角度来看,这意味着什么? 确定性与非确定性流程的融合 该公司表示,关键在于允许用户(通常是数据科学家、软件

参加Google Cloud Next '25,我渴望看到Google如何区分其AI产品。 有关代理空间(此处讨论)和客户体验套件(此处讨论)的最新公告很有希望,强调了商业价值

为您的检索增强发电(RAG)系统选择最佳的多语言嵌入模型 在当今的相互联系的世界中,建立有效的多语言AI系统至关重要。 强大的多语言嵌入模型对于RE至关重要

特斯拉的Austin Robotaxi发射:仔细观察Musk的主张 埃隆·马斯克(Elon Musk)最近宣布,特斯拉即将在德克萨斯州奥斯汀推出的Robotaxi发射,最初出于安全原因部署了一支小型10-20辆汽车,并有快速扩张的计划。 h

人工智能的应用方式可能出乎意料。最初,我们很多人可能认为它主要用于代劳创意和技术任务,例如编写代码和创作内容。 然而,哈佛商业评论最近报道的一项调查表明情况并非如此。大多数用户寻求人工智能的并非是代劳工作,而是支持、组织,甚至是友谊! 报告称,人工智能应用案例的首位是治疗和陪伴。这表明其全天候可用性以及提供匿名、诚实建议和反馈的能力非常有价值。 另一方面,营销任务(例如撰写博客、创建社交媒体帖子或广告文案)在流行用途列表中的排名要低得多。 这是为什么呢?让我们看看研究结果及其对我们人类如何继续将


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

SublimeText3汉化版
中文版,非常好用