搜索
首页科技周边人工智能工业AI也将迎来「ChatGPT时刻」

ChatGPT 的出现或许表明,在过去几年被逐渐认为到达产业化瓶颈的 AI 行业仍是一片最具创新性的沃土,蕴含着巨大的机会。

基于单模态 GPT-3 的 ChatGPT 「地震」余波未平,多模态 GPT-4「海啸」又顷刻席卷朋友圈。

「这提醒我们,对人工智能的预测是非常困难的。」OpenAI CEO Sam Altman 曾在 DALL-E 2 发布后讲过这样一句话。事实证明他是对的。基于符号主义的专家系统的衰落,让人们一度认为人工智能已走到尽头,2012 年的深度学习又点燃了希望,如今它已统领 AI 领域。随着系统规模越来越大,训练时间和资金成本也在不断膨胀。就在大家担心向模型添加参数正达到边际效益递减时,GPT-3、GPT-4 相继昭告世人,更大规模、更加复杂的深度学习系统确实可以释放更为惊人的能力,而 ChatGPT 的诞生,更是让人看到了「颠覆性」的应用成果(假消息甚至称GPT4参数量100万亿)。

工业AI也将迎来「ChatGPT时刻」

ChatGPT 的出现或许表明,在过去几年被逐渐认为到达产业化瓶颈的 AI 行业仍是一片最具创新性的沃土,蕴含着巨大的机会。而随着新生产力初显雏形,以工业制造为代表的行业或许将迎来更深入的 AI 变革,迎来属于产业的 “ChatGPT 时刻”,在这一过程中与技术趋势契合的科技企业也有望率先出圈。

一、通用性的胜利

迄今为止,主导 AI 领域的模型仍然是面向特定任务的。AI 企业开发的模型在特定范围内有不错的表现,但工程师们发现其泛化能力不足以支持部署到更广泛场景。用业内人士的话说,已经训练了很多模型,但仍然需要茫茫多的模型。

这一瓶颈在高度碎片化工业制造领域几乎被 N 倍放大。因为工业制造中细分领域众多,各领域在生产流程、工艺、生产线配置、原材料及产品类型上均具有较大差异性。锂电池生产可分为十几道工序,工艺点数以千计,一条产线至少有 2500 个关键的质量控制点;液晶面板生产涉及上百道工序,生产过程中可能出现的面板缺陷种类多达 120 种;手机有几百种零件,涉及几百个供应商,每个零件可能有几十种缺陷要做检测。

现有的深度学习模型泛化程度低,即使在同一行业,模型的可复用比例也比较低。比如,如果要服务一家全球领先的手机品牌的整个智能产线,可能需要打造几十万个算法模型(不包括后续软硬件的迭代升级)。

现在,这个棘手的问题成了 ChatGPT 背后所代表的基础模型(大模型)的典型场景。

在 2022 年,一篇来自谷歌、斯坦福大学、北卡罗来纳大学教堂山分校以及 DeepMind 等机构的研究论文 [1],介绍了大模型的「Emergent Ability(突现能力)」,即有些现象不存在于较小的模型中但存在于较大的模型中,他们认为模型的这种能力是突现的。虽然这种能力目前主要体现在语言模型上,但它也激发了在视觉模型、多模态模型上未来的研究。

根据斯坦福大学以人为本人工智能中心(HAI)基础模型研究中心(CRFM)的说法,「它(大模型)代表着构建 AI 系统的一种新的成功范式,在大量数据上训练一个模型,并使其适应多种应用」[2]。

这种通用能力正是工业制造所需要的。工业制造面对的场景五花八门,如何通过稳定的技术体系,在高度碎片化的需求中打造通用的技术能力,成为任何一家试图在此大展身手的科技企业的最大挑战。

思谋科技创始人贾佳亚在公司成立之初曾提到 AI 2.0 概念,其与在当下广泛采用 AI 1.0 的 AI 公司有所区别的一个核心要点,就是对通用性的强调。「我们想做新一代的 AI 体系架构,把以前别人在单个场景做的事情,用统一的架构去解决它,在不同场景里做到通用」,贾佳亚说,「从底层构建更智能的算法,用标准化的手段解决分散的工业场景,克服可复制性和标准性等关键性问题。」

思谋科技最受欢迎的产品 SMore ViMo 工业平台,就是通用性设计思维的典型例子,它是针对工业场景打造的首个跨行业中枢平台,具有多场景通用性。不仅满足新能源、半导体、汽车、消费电子等多个行业领域超过 1000 种细分应用场景需求,还灵活支持多种高难度工业视觉方案设计需求,比如产线的物料追踪、缺陷定位、工件计数、外观瑕疵检测等等。

工业AI也将迎来「ChatGPT时刻」

SMore ViMo 智能工业平台的系统架构。

这条路的重要特点是比较好地平衡了敏捷、个性化与低边际成本。借助 SMore ViMo 平台,思谋科技已经可以同时支撑工业中不同行业的上百个项目,未来还有望再扩大十倍,同时支撑上千个项目,为 AI 的行业应用带来效率上的突破。

在率先于大规模工业场景使用 Transformer 技术,极大提高智能制造效率之后,思谋也再次第一时间拥抱大模型。思谋团队是最早对大模型在工业领域的 Emergent Ability 开展研究和产业化的团队,其工业大模型利用少量缺陷样本进行 in-context learning,从而使基础模型快速适应特定工业场景,并完成特定任务。

在一些业内人士看来,ChatGPT 及其背后更加具有通用性的技术的成功,将推动 AI 应用进入一个新的阶段。在以工业制造为代表的各行各业中,过去扎根产业,拥抱这一趋势,完成数据与技术落地闭环的企业拥有更多优势,在未来应用大爆发的过程中亦会更受到青睐。

二、加速 AI 普惠

在工业制造领域,不同「语言」之间也有着深刻隔阂。有业内人士表示,工业制造产业积累了很多数据,但制造业的工程师(比如机械工程师、材料工程师)还是很少去写程序来把这些数据利用起来,而 AI 开发者也面临理解产业问题的挑战,这在很大程度上约束了技术的落地。

思谋科技的算法工程师表示,ChatGPT 背后的技术,如 RLHF (Reinforcement Learning from Human Feedback,基于人类反馈的强化学习),让他们看到可以在现有的工作上更进一步。

RLHF 是强化学习的一个扩展,它将人类的反馈纳入训练大模型的过程,为机器提供了一种自然的、人性化的互动学习过程,就像人类从另一个专业人士身上学习专业知识的方式一样。通过在 AI 和人类之间架起一座桥梁,RLHF 让 AI 快速掌握了人类经验。

他们表示,工业 AI 未来可以孕育出一个主动学习 AIaaS(AI As a Service,人工智能即服务)平台,通过算法工程师和标注专家的配合,利用 RLHF 技术训练大模型,用人类知识让 AI 理解工业问题,并满足特定工业任务的要求,让不会编程的工业专家也能训练 AI 模型。

目前,思谋科技已经在探索 RLHF 和工业结合的应用场景。

此外,ChatGPT 这种简单的交互模式与工业制造中落地 AI 的策略亦十分相似。工业领域场景复杂,好的产品一定是简单易用的,比如通过简明的交互,一键化部署方案,减少交付过程中的培训成本与学习负担。

许多程序员表示,ChatGPT 相当于重新构建了一座宏伟的巴别塔,与计算机的交流,不再是程序员的专利,它已经可以理解部分需求,并生产简单的代码方案。但现在,我们可以预见在不久的将来,制造领域的从业者也可以在 AI 平台上实现自行编程,根据产线需求开发模型。这样也能帮助解决制造业 AI 人才短缺的问题。

「只有当计算机系统可以突破工业落地中的几大难题,实现自动算法组合和部署,人类仅需参与少量定制化算法设计时,AI 的跨领域规模产业化才具备实现的可能。」贾佳亚曾表示。

事实上,思谋科技很早开始便构想打造一个可实现技术快速迭代的开发平台,只需把工业AI也将迎来「ChatGPT时刻」上传,即可自动标注缺陷,一键测试得到产品级的模型或 SDK,减少项目中大量投入的算法成本。

随着项目的迭代,思谋科技逐渐把更加成熟的行业方案和实用经验整合到产品中,继而推出了完整的产品类型,让客户无需在思谋科技员工的帮助下即可自行体验与使用,从而形成了产品最早的商业化应用。

随着技术的进步,无论是面向消费者,还是面向工业制造这样的产业,我们已经看到了更普惠技术应用,正在带来巨大的机遇。

三、ChatGPT 只是一个起点

十年以来,AI 技术的商业化受到了诸多质疑。这一次,ChatGTP 背后所代表的技术突破,预示着一场革命的到来,AI 有可能真的成为普世的生产力基础设施。

「GPT (generative pre-trained transformer)也完全可以是 general - purpose technology (通用技术)的缩写」,《经济学人》的一篇文章中写到,「一种翻天覆地的创新,可以像蒸汽机、电力和计算机那样提升各行各业的生产率」[3]。

始于 20 世纪 80 年代的个人电脑革命,到 90 年代末开始真正提升生产力,因为这些机器变得更便宜、更强大,还能连接到互联网。深度学习的转折发生在 2012 年,彼时 AlexNet 神经网络在 ImageNet 比赛中获得冠军,至此大量研究开始铺开,激发人们将其应用于各个领域。十多年的时间,深度学习技术正在跨越大规模赋能产业的门槛。

回顾工业制造智能化的发展历程,技术能力和算法无法满足实际应用需求、解决方案复制性较差难以落地、新技术公司与制造业企业沟通成本高等挑战一直存在。而目前基础模型(大模型)表现出多领域多任务的通用化能力,正在打破这些行业「壁垒」,并用低成本、普惠的方式,「席卷」容错率极低、成本敏感的产业应用。

用 AI 解决产业问题蕴含着机会,ChatGPT 是一个起点,随着一些扎根产业的技术公司的持续深耕,越来越多的行业正在迎来 AI 应用的 “ChatGPT 时刻”。

以上是工业AI也将迎来「ChatGPT时刻」的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具