搜索
首页后端开发Python教程python中多进程和进程池(Processing库)的实例代码

python中多进程和进程池(Processing库)的实例代码

Jun 16, 2017 am 11:13 AM
python多进程进程池

本篇文章主要介绍了详解python之多进程和进程池(Processing库),非常具有实用价值,需要的朋友可以参考下

环境:win7+python2.7

一直想学习多进程或多线程,但之前只是单纯看一点基础知识还有简单的介绍,无法理解怎么去应用,直到前段时间看了github的一个爬虫项目涉及到多进程,多线程相关内容,一边看一边百度相关知识点,现在把一些相关知识点和一些应用写下来做个记录.

首先说下什么是进程:进程是程序在计算机上的一次执行活动,当运行一个程序的时候,就启动了一个进程.而进程又分为系统进程和用户进程.只要是用于完成操作系统的各种功能的进程就是系统进程,它们就是处于运行状态下的操作系统本身;而所有由你启动的进程都是用户进程。进程是操作系统进行资源分配的单位。

直观点说,在任务管理器的用户名上标明system的是系统进程,标明administrator的是用户进程,另外net是网洛,lcacal service是本地服务,关于进程更加具体的信息可以百科,这里得省点力气,不然收不回了.

一.多进程的简单使用

如图,multiprocessing有多个函数,很多我也还没去了解,这里只讲我目前了解的.

进程创建:Process(target=主要运行的函数,name=自定义进程名称可不写,args=(参数))

方法:

  1. is_alive():判断进程是否存活

  2. join([timeout]):子进程结束再执行下一步,timeout为超时时间,有时进程遇到阻塞,为了程序能够运行下去而设置超时时间

  3. run():如果在创建Process对象的时候不指定target,那么就会默认执行Process的run方法

  4. start():启动进程,区分run()

  5. terminate():终止进程,关于终止进程没有这么简单,貌似用psutil包会更好,有机会以后了解更多再写下。

其中,Process以start()启动某个进程。

属性:

  1. authkey: 在文档中authkey()函数找到这么一句话:Set authorization key of process设置过程的授权密钥 ,目前没找到相关应用实例,这个密钥是怎么用的呢?文章不提

  2. daemon:父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置

  3. exitcode:进程在运行时为None、如果为–N,表示被信号N结束

  4. name:进程的名字,自定义

  5. pid:每个进程有唯一的PID编号。

1.Process(),start(),join()

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(target=fun1,args=(4,))
 p2 = Process(target=fun2, args=(6,))
 p1.start()
 p2.start()
 p1.join()
 p2.join()
 b=time.time()
 print 'finish',b-a

这里一共开了两个进程,p1和p2,arg=(4,)中的4是fun1函数的参数,这里要用tulpe类型,如果两个参数或更多就是arg=(参数1,参数2...),之后用start()启动进程,我们设置等待p1和p2进程结束再执行下一步.来看下面的运行结果,fun2和fun1基本在同一时间开始运行,当运行完毕(fun1睡眠4秒,同时fun2睡眠6秒),才执行print 'finish',b-a语句

this is fun2 Mon Jun 05 13:48:04 2017
this is fun1 Mon Jun 05 13:48:04 2017
fun1 finish Mon Jun 05 13:48:08 2017
fun2 finish Mon Jun 05 13:48:10 2017
finish 6.20300006866

Process finished with exit code 0

我们再来看下start()与join()处于不同位置会发生什么

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(target=fun1,args=(4,))
 p2 = Process(target=fun2, args=(6,))
 p1.start()
 p1.join()
 p2.start()
 p2.join()
 b=time.time()
 print 'finish',b-a

结果:

this is fun1 Mon Jun 05 14:19:28 2017
fun1 finish Mon Jun 05 14:19:32 2017
this is fun2 Mon Jun 05 14:19:32 2017
fun2 finish Mon Jun 05 14:19:38 2017
finish 10.1229999065

Process finished with exit code 0

看,现在是先运行fun1函数,运行完毕再运行fun2接着再是print 'finish',即先运行进程p1再运行进程p2,感受到join()的魅力了吧.现在再试试注释掉join()看看又会出现什么

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(target=fun1,args=(4,))
 p2 = Process(target=fun2, args=(6,))
 p1.start()
 p2.start()
 p1.join()
 #p2.join()
 b=time.time()
 print 'finish',b-a

结果:

this is fun1 Mon Jun 05 14:23:57 2017
this is fun2 Mon Jun 05 14:23:58 2017
fun1 finish Mon Jun 05 14:24:01 2017
finish 4.05900001526
fun2 finish Mon Jun 05 14:24:04 2017

Process finished with exit code 0

这次是运行完fun1(因为p1进程有用join(),所以主程序等待p1运行完接着执行下一步),接着继续运行主进程的print 'finish',最后fun2运行完毕才结束

2.name,daemon,is_alive():

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print 'this is fun1',time.ctime()
 time.sleep(t)
 print 'fun1 finish',time.ctime()

def fun2(t):
 print 'this is fun2',time.ctime()
 time.sleep(t)
 print 'fun2 finish',time.ctime()

if name == 'main':
 a=time.time()
 p1=Process(name='fun1进程',target=fun1,args=(4,))
 p2 = Process(name='fun2进程',target=fun2, args=(6,))
 p1.daemon=True
 p2.daemon = True
 p1.start()
 p2.start()
 p1.join()
 print p1,p2
 print '进程1:',p1.is_alive(),'进程2:',p2.is_alive()
 #p2.join()
 b=time.time()
 print 'finish',b-a

结果:

this is fun2 Mon Jun 05 14:43:49 2017
this is fun1 Mon Jun 05 14:43:49 2017
fun1 finish Mon Jun 05 14:43:53 2017
<Process(fun1进程, stopped daemon)> <Process(fun2进程, started daemon)>
进程1: False 进程2: True
finish 4.06500005722

Process finished with exit code 0

可以看到,name是给进程赋予名字, 运行到print '进程1:',p1.is_alive(),'进程2:',p2.is_alive() 这句的时候,p1进程已经结束(返回False),p2进程仍然在运行(返回True),但p2没有用join(),所以直接接着执行主进程,由于用了daemon=Ture,父进程终止后自动终止,p2进程没有结束就强行结束整个程序了.

3.run()

run()在Process没有指定target函数时,默认用run()函数运行程序,

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a = time.time()
 p=Process()
 p.start()
 p.join()
 b = time.time()
 print &#39;finish&#39;, b - a

结果:

finish 0.0840001106262

从结果看出,进程p什么也没做,为了让进程正常运行,我们酱紫写:

目标函数没有参数:

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1():
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(2)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a = time.time()
 p=Process()
 p.run=fun1
 p.start()
 p.join()
 b = time.time()
 print &#39;finish&#39;, b - a

结果:

this is fun1 Mon Jun 05 16:34:41 2017
fun1 finish Mon Jun 05 16:34:43 2017
finish 2.11500000954

Process finished with exit code 0

目标函数有参数:

# -*- coding:utf-8 -*-
from multiprocessing import Process
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a = time.time()
 p=Process()
 p.run=fun1(2)
 p.start()
 p.join()
 b = time.time()
 print &#39;finish&#39;, b - a

结果:

this is fun1 Mon Jun 05 16:36:27 2017
fun1 finish Mon Jun 05 16:36:29 2017
Process Process-1:
Traceback (most recent call last):
 File "E:\Anaconda2\lib\multiprocessing\process.py", line 258, in _bootstrap
 self.run()
TypeError: &#39;NoneType&#39; object is not callable
finish 2.0529999733

Process finished with exit code 0

目标函数有参数的出现了异常,为什么呢?我现在还找不到原因,但是实践发现,当最后一个参数赋予进程运行后,没有其他参数,就会出现这个异常,有人知道的望告知.

二.进程池

对于需要使用几个甚至十几个进程时,我们使用Process还是比较方便的,但是如果要成百上千个进程,用Process显然太笨了,multiprocessing提供了Pool类,即现在要讲的进程池,能够将众多进程放在一起,设置一个运行进程上限,每次只运行设置的进程数,等有进程结束,再添加新的进程

Pool(processes =num):设置运行进程数,当一个进程运行完,会添加新的进程进去

apply_async(函数,(参数)):非阻塞,其中参数是tulpe类型,

apply(函数,(参数)):阻塞

close():关闭pool,不能再添加新的任务

terminate():结束运行的进程,不再处理未完成的任务

join():和Process介绍的作用一样, 但要在close或terminate之后使用。

1.单个进程池

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a=time.time()
 pool = Pool(processes =3) # 可以同时跑3个进程
 for i in range(3,8):
  pool.apply_async(fun1,(i,))
 pool.close()
 pool.join()
 b=time.time()
 print &#39;finish&#39;,b-a

结果:

this is fun1 Mon Jun 05 15:15:38 2017
this is fun1 Mon Jun 05 15:15:38 2017
this is fun1 Mon Jun 05 15:15:38 2017
fun1 finish Mon Jun 05 15:15:41 2017
this is fun1 Mon Jun 05 15:15:41 2017
fun1 finish Mon Jun 05 15:15:42 2017
this is fun1 Mon Jun 05 15:15:42 2017
fun1 finish Mon Jun 05 15:15:43 2017
fun1 finish Mon Jun 05 15:15:47 2017
fun1 finish Mon Jun 05 15:15:49 2017
finish 11.1370000839

Process finished with exit code 0

从上面的结果可以看到,设置了3个运行进程上限,15:15:38这个时间同时开始三个进程,当第一个进程结束时(参数为3秒那个进程),会添加新的进程,如此循环,直至进程池运行完再执行主进程语句b=time.time() print 'finish',b-a .这里用到非阻塞apply_async(),再来对比下阻塞apply()

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a=time.time()
 pool = Pool(processes =3) # 可以同时跑3个进程
 for i in range(3,8):
  pool.apply(fun1,(i,))
 pool.close()
 pool.join()
 b=time.time()
 print &#39;finish&#39;,b-a

结果:

this is fun1 Mon Jun 05 15:59:26 2017
fun1 finish Mon Jun 05 15:59:29 2017
this is fun1 Mon Jun 05 15:59:29 2017
fun1 finish Mon Jun 05 15:59:33 2017
this is fun1 Mon Jun 05 15:59:33 2017
fun1 finish Mon Jun 05 15:59:38 2017
this is fun1 Mon Jun 05 15:59:38 2017
fun1 finish Mon Jun 05 15:59:44 2017
this is fun1 Mon Jun 05 15:59:44 2017
fun1 finish Mon Jun 05 15:59:51 2017
finish 25.1610000134

Process finished with exit code 0

可以看到,阻塞是当一个进程结束后,再进行下一个进程,一般我们都用非阻塞apply_async()

2.多个进程池

上面是使用单个进程池的,对于多个进程池,我们可以用for循环,直接看代码

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import time

def fun1(t):
 print &#39;this is fun1&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun1 finish&#39;,time.ctime()

def fun2(t):
 print &#39;this is fun2&#39;,time.ctime()
 time.sleep(t)
 print &#39;fun2 finish&#39;,time.ctime()

if name == &#39;main&#39;:
 a=time.time()
 pool = Pool(processes =3) # 可以同时跑3个进程
 for fun in [fun1,fun2]:
  for i in range(3,8):
   pool.apply_async(fun,(i,))
 pool.close()
 pool.join()
 b=time.time()
 print &#39;finish&#39;,b-a

结果:

this is fun1 Mon Jun 05 16:04:38 2017
this is fun1 Mon Jun 05 16:04:38 2017
this is fun1 Mon Jun 05 16:04:38 2017
fun1 finish Mon Jun 05 16:04:41 2017
this is fun1 Mon Jun 05 16:04:41 2017
fun1 finish Mon Jun 05 16:04:42 2017
this is fun1 Mon Jun 05 16:04:42 2017
fun1 finish Mon Jun 05 16:04:43 2017
this is fun2 Mon Jun 05 16:04:43 2017
fun2 finish Mon Jun 05 16:04:46 2017
this is fun2 Mon Jun 05 16:04:46 2017
fun1 finish Mon Jun 05 16:04:47 2017
this is fun2 Mon Jun 05 16:04:47 2017
fun1 finish Mon Jun 05 16:04:49 2017
this is fun2 Mon Jun 05 16:04:49 2017
fun2 finish Mon Jun 05 16:04:50 2017
this is fun2 Mon Jun 05 16:04:50 2017
fun2 finish Mon Jun 05 16:04:52 2017
fun2 finish Mon Jun 05 16:04:55 2017
fun2 finish Mon Jun 05 16:04:57 2017
finish 19.1670000553

Process finished with exit code 0

看到了,在fun1运行完接着运行fun2.

另外对于没有参数的情况,就直接 pool.apply_async(funtion),无需写上参数.

在学习编写程序过程,曾遇到不用if _name_ == '_main_':而直接运行程序,这样结果会出错,经查询,在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if _name_ == ‘_main_' :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要。原因有人这么说:在执行的時候,由于你写的 py 会被当成module 读进执行。所以,一定要判断自身是否为 _main_。也就是要:

if name == ‘main&#39; :
# do something.

这里我自己还搞不清楚,期待以后能够理解

以上是python中多进程和进程池(Processing库)的实例代码的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python脚本可能无法在UNIX上执行的一些常见原因是什么?Python脚本可能无法在UNIX上执行的一些常见原因是什么?Apr 28, 2025 am 12:18 AM

Python脚本在Unix系统上无法运行的原因包括:1)权限不足,使用chmod xyour_script.py赋予执行权限;2)Shebang行错误或缺失,应使用#!/usr/bin/envpython;3)环境变量设置不当,可打印os.environ调试;4)使用错误的Python版本,可在Shebang行或命令行指定版本;5)依赖问题,使用虚拟环境隔离依赖;6)语法错误,使用python-mpy_compileyour_script.py检测。

举一个场景的示例,其中使用Python数组比使用列表更合适。举一个场景的示例,其中使用Python数组比使用列表更合适。Apr 28, 2025 am 12:15 AM

使用Python数组比列表更适合处理大量数值数据。1)数组更节省内存,2)数组对数值运算更快,3)数组强制类型一致性,4)数组与C语言数组兼容,但在灵活性和便捷性上不如列表。

在Python中使用列表与数组的性能含义是什么?在Python中使用列表与数组的性能含义是什么?Apr 28, 2025 am 12:10 AM

列表列表更好的forflexibility andmixDatatatypes,何时出色的Sumerical Computitation sand larged数据集。1)不可使用的列表xbilese xibility xibility xibility xibility xibility xibility xibility xibility xibility xibility xibles and comply offrequent elementChanges.2)

Numpy如何处理大型数组的内存管理?Numpy如何处理大型数组的内存管理?Apr 28, 2025 am 12:07 AM

numpymanagesmemoryforlargearraysefefticefticefipedlyuseviews,副本和内存模拟文件.1)viewsAllowSinglicingWithOutCopying,直接modifytheoriginalArray.2)copiesCanbecopy canbecreatedwitheDedwithTheceDwithThecevithThece()methodervingdata.3)metservingdata.3)memore memore-mappingfileShessandAstaStaStstbassbassbassbassbassbassbassbassbassbassbb

哪个需要导入模块:列表或数组?哪个需要导入模块:列表或数组?Apr 28, 2025 am 12:06 AM

Listsinpythondonotrequireimportingamodule,helilearraysfomthearraymoduledoneedanimport.1)列表列表,列表,多功能和canholdMixedDatatatepes.2)arraysaremoremoremoremoremoremoremoremoremoremoremoremoremoremoremoremoremeremeremeremericdatabuteffeftlessdatabutlessdatabutlessfiblesible suriplyElsilesteletselementEltecteSemeTemeSemeSemeSemeTypysemeTypysemeTysemeTypysemeTypepe。

可以在Python数组中存储哪些数据类型?可以在Python数组中存储哪些数据类型?Apr 27, 2025 am 12:11 AM

pythonlistscanStoryDatatepe,ArrayModulearRaysStoreOneType,and numpyArraySareSareAraysareSareAraysareSareComputations.1)列出sareversArversAtileButlessMemory-Felide.2)arraymoduleareareMogeMogeNareSaremogeNormogeNoreSoustAta.3)

如果您尝试将错误的数据类型的值存储在Python数组中,该怎么办?如果您尝试将错误的数据类型的值存储在Python数组中,该怎么办?Apr 27, 2025 am 12:10 AM

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

Python标准库的哪一部分是:列表或数组?Python标准库的哪一部分是:列表或数组?Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。