提升Jieba分词及景区评论关键词提取的策略
许多人使用Jieba进行中文分词,并结合LDA模型提取景区评论主题关键词,但分词效果常常影响最终结果的准确性。例如,直接使用Jieba分词再进行LDA建模,提取出的主题关键词可能存在分词错误。
以下代码示例展示了这一问题:
# 加载中文停用词 stop_words = set(stopwords.words('chinese')) broadcastVar = spark.sparkContext.broadcast(stop_words) # 中文文本分词 def tokenize(text): return list(jieba.cut(text)) # 删除中文停用词 def delete_stopwords(tokens, stop_words): filtered_words = [word for word in tokens if word not in stop_words] filtered_text = ' '.join(filtered_words) return filtered_text # 删除标点符号和特定字符 def remove_punctuation(input_string): punctuation = string.punctuation "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.\t \n很好是去还不人太都中" translator = str.maketrans('', '', punctuation) no_punct = input_string.translate(translator) return no_punct def Thematic_focus(text): from gensim import corpora, models num_words = min(len(text) // 50 3, 10) # 动态调整主题词数量 tokens = tokenize(text) stop_words = broadcastVar.value text = delete_stopwords(tokens, stop_words) text = remove_punctuation(text) tokens = tokenize(text) dictionary = corpora.Dictionary([tokens]) corpus = [dictionary.doc2bow(tokens)] lda_model = models.LdaModel(corpus, num_topics=1, id2word=dictionary, passes=50) topics = lda_model.show_topics(num_words=num_words) for topic in topics: return str(topic)
为了改进分词效果和关键词提取,建议采取以下策略:
-
构建自定义词库: 搜集旅游相关的专业词汇,构建自定义词库并加载到Jieba中,提高对旅游领域术语的识别准确率。这比依赖通用词库更有效。
-
优化停用词词库: 使用更全面的停用词库,或根据景区评论的特点,构建自定义停用词库,去除干扰词,提升LDA模型的准确性。 考虑使用GitHub上公开的停用词库作为基础,并根据实际情况进行增删。
通过以上方法,可以显著提升Jieba分词的准确性,从而更有效地提取景区评论中的关键词,最终得到更准确的主题模型和词云图。 代码中也对主题词数量进行了动态调整,避免过少或过多主题词影响结果。
以上是如何提升jieba分词效果以更好地提取景区评论中的关键词?的详细内容。更多信息请关注PHP中文网其他相关文章!

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。 1)在金融中,使用内存映射文件和NumPy库可显着提升数据处理速度。 2)科研领域,HDF5文件优化数据存储和检索。 3)医疗中,数据库优化技术如索引和分区提高数据查询性能。 4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显着提升系统性能和可扩展性。

pythonarraysarecreatedusiseThearrayModule,notbuilt-Inlikelists.1)importThearrayModule.2)指定tefifythetypecode,例如,'i'forineizewithvalues.arreaysofferbettermemoremorefferbettermemoryfforhomogeNogeNogeNogeNogeNogeNogeNATATABUTESFELLESSFRESSIFERSTEMIFICETISTHANANLISTS。

除了shebang线,还有多种方法可以指定Python解释器:1.直接使用命令行中的python命令;2.使用批处理文件或shell脚本;3.使用构建工具如Make或CMake;4.使用任务运行器如Invoke。每个方法都有其优缺点,选择适合项目需求的方法很重要。

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

WebStorm Mac版
好用的JavaScript开发工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

禅工作室 13.0.1
功能强大的PHP集成开发环境

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能