>在Databricks上部署DeepSeek R1模型:逐步指南
流行的数据工程平台本指南涵盖了帐户设置,使用UI的模型注册以及通过操场和本地卷曲命令访问。 Databricks的新手? Databricks课程简介提供了Databricks Lakehouse平台及其数据管理功能的全面概述。 要更深入地了解Databricks中的数据管理,请考虑Databricks课程中的数据管理。
注册DeepSeek R1模型>
<code class="language-python">%%capture !pip install torch transformers mlflow accelerate torchvision %restart_python</code>
<code class="language-python">import pandas as pd import mlflow import mlflow.transformers import torch from mlflow.models.signature import infer_signature from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, pipeline model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16)</code>
<code class="language-python">text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer) example_prompt = "How does a computer work?" example_inputs = pd.DataFrame({"inputs": [example_prompt]}) example_outputs = text_generator(example_prompt, max_length=200) signature = infer_signature(example_inputs, example_outputs) print(example_outputs)</code>
<code>[{'generated_text': "How does a computer work? What is the computer? What is the computer used for? What is the computer used for in real life?\n\nI need to answer this question, but I need to do it step by step. I need to start with the very basic level and build up from there. I need to make sure I understand each concept before moving on. I need to use a lot of examples to explain each idea. I need to write my thoughts as if I'm explaining them to someone else, but I need to make sure I understand how to structure the answer properly.\n\nOkay, let's start with the basic level. What is a computer? It's an electronic device, right? And it has a central processing unit (CPU) that does the processing. But I think the central processing unit is more efficient, so maybe it's the CPU. Then, it has memory and storage. I remember that memory is like RAM and storage is like ROM. But wait, I think"}]</code>
<code class="language-python">conda_env = { "name": "mlflow-env", "channels": ["defaults", "conda-forge"], "dependencies": [ "python=3.11", "pip", {"pip": ["mlflow", "transformers", "accelerate", "torch", "torchvision"]} ] }</code>
mlflow.transformers.log_model
<code class="language-python">with mlflow.start_run() as run: mlflow.transformers.log_model( transformers_model=text_generator, artifact_path="deepseek_model", signature=signature, input_example=example_inputs, registered_model_name="deepseek_r1_llama_8b", conda_env=conda_env )</code>
在databricks仪表板中,转到“模型”选项卡。
>
>
$DATABRICKS_TOKEN
<code class="language-python">%%capture !pip install torch transformers mlflow accelerate torchvision %restart_python</code>
>
以上是在Databricks上部署DeepSeek R1:逐步指南的详细内容。更多信息请关注PHP中文网其他相关文章!