搜索
首页后端开发Python教程在 PyTorch 中调整大小

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了 OxfordIIITPet()。

Resize() 可以调整零个或多个图像的大小,如下所示:

*备忘录:

  • 初始化的第一个参数是 size(必需类型:int 或 tuple/list(int)): *备注:
    • 它是[宽度,高度]。
    • 必须是 1
    • 元组/列表必须是具有 1 或 2 个元素的一维。
    • 单个值(int 或 tuple/list(int`))应用于较小图像的宽度或高度边缘,然后另一个较大的宽度或高度边缘也会调整大小: *备注:
    • 如果图像宽度小于其高度,则为 [尺寸, 尺寸 * 宽度 / 高度]。
    • 如果图像宽度大于其高度,则为 [尺寸 * 宽度 / 高度 , 尺寸]。
    • 如果图像宽度等于其高度,则为 [size, size]。
  • 初始化的第二个参数是插值(Optional-Default:InterpolationMode.BILINEAR-Type:InterpolationMode)。
  • 初始化的第三个参数是 max_size(Optional-Default:None-Type:int): *备注:
    • 仅当 size 为单个值(int 或 tuple/list(int`))时才支持。
    • 应用尺寸后,如果较大图像的宽度或高度边缘超过它,则会将其应用于较大图像的宽度或高度边缘以限制图像尺寸,然后其他较小图像的宽度或高度边缘也会变得比之前小。
  • 初始化的第四个参数是抗锯齿(可选默认值:True-Type:bool)。 *即使设置为 False,插值为 InterpolationMode.BILINEAR 或 InterpolationMode.BICUBIC 时也始终为 True。
  • 第一个参数是img(必需类型:PIL图像或张量(int,float,complex或bool)): *备注:
    • 张量必须是一个或多个元素的 3D 或多维张量。
    • 不要使用img=。
  • v2建议按照V1还是V2使用?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Resize
from torchvision.transforms.functional import InterpolationMode

resize = Resize(size=100)
resize = Resize(size=100,
                interpolation=InterpolationMode.BILINEAR,
                max_size=None,
                antialias=True)
resize
# Resize(size=[100],
#        interpolation=InterpolationMode.BILINEAR,
#        antialias=True)

resize.size
# [100]

resize.interpolation
# <interpolationmode.bilinear:>

print(resize.max_size)
# None

resize.antialias
# True

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p1000_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=1000)
    # transform=Resize(size=[1000])
)

p100_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=100)
)

p50_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=50)
)

p10_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=10)
)

p100p180_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=[100, 180])
)

p180p100_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=[180, 100])
)

p100ms110_data = OxfordIIITPet(
    root="data",
    transform=Resize(size=100, max_size=110)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p1000_data, main_title="p1000_data")
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p50_data, main_title="p50_data")
show_images1(data=p10_data, main_title="p10_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p100p180_data, main_title="p100p180_data")
show_images1(data=p180p100_data, main_title="p180p100_data")
print()
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p100ms110_data, main_title='p100ms110_data')

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None, ms=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        if not s:
            s = im.size
        resize = Resize(size=s, max_size=ms) # Here
        plt.imshow(X=resize(im)) # Here
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p1000_data", s=1000)
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p50_data", s=50)
show_images2(data=origin_data, main_title="p10_data", s=10)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p100p180_data", s=[100, 180])
show_images2(data=origin_data, main_title="p180p100_data", s=[180, 100])
print()
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p100ms110_data", s=100, ms=110)
</interpolationmode.bilinear:>

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description


Image description

Image description

以上是在 PyTorch 中调整大小的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
您如何将元素附加到Python列表中?您如何将元素附加到Python列表中?May 04, 2025 am 12:17 AM

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

您如何创建Python列表?举一个例子。您如何创建Python列表?举一个例子。May 04, 2025 am 12:16 AM

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

讨论有效存储和数值数据的处理至关重要的实际用例。讨论有效存储和数值数据的处理至关重要的实际用例。May 04, 2025 am 12:11 AM

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。 1)在金融中,使用内存映射文件和NumPy库可显着提升数据处理速度。 2)科研领域,HDF5文件优化数据存储和检索。 3)医疗中,数据库优化技术如索引和分区提高数据查询性能。 4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显着提升系统性能和可扩展性。

您如何创建Python数组?举一个例子。您如何创建Python数组?举一个例子。May 04, 2025 am 12:10 AM

pythonarraysarecreatedusiseThearrayModule,notbuilt-Inlikelists.1)importThearrayModule.2)指定tefifythetypecode,例如,'i'forineizewithvalues.arreaysofferbettermemoremorefferbettermemoryfforhomogeNogeNogeNogeNogeNogeNogeNATATABUTESFELLESSFRESSIFERSTEMIFICETISTHANANLISTS。

使用Shebang系列指定Python解释器有哪些替代方法?使用Shebang系列指定Python解释器有哪些替代方法?May 04, 2025 am 12:07 AM

除了shebang线,还有多种方法可以指定Python解释器:1.直接使用命令行中的python命令;2.使用批处理文件或shell脚本;3.使用构建工具如Make或CMake;4.使用任务运行器如Invoke。每个方法都有其优缺点,选择适合项目需求的方法很重要。

列表和阵列之间的选择如何影响涉及大型数据集的Python应用程序的整体性能?列表和阵列之间的选择如何影响涉及大型数据集的Python应用程序的整体性能?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

说明如何将内存分配给Python中的列表与数组。说明如何将内存分配给Python中的列表与数组。May 03, 2025 am 12:10 AM

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

您如何在Python数组中指定元素的数据类型?您如何在Python数组中指定元素的数据类型?May 03, 2025 am 12:06 AM

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具