这篇文章演示了如何使用带有 torchvision.datasets.CocoCaptions
和 torchvision.datasets.CocoDetection
的 MS COCO 数据集。 我们将探索使用数据集的各种子集加载图像字幕和对象检测任务的数据。
下面的示例使用不同的 COCO 注释文件 (captions_*.json
, instances_*.json
, person_keypoints_*.json
, stuff_*.json
, panoptic_*.json
, image_info_*.json
) 以及相应的图像目录 (train2017
, val2017
,test2017
)。请注意,CocoDetection
处理不同的注释类型,而 CocoCaptions
主要关注标题。
CocoCaptions 示例:
本节展示如何使用 train2017
从 val2017
、test2017
和 CocoCaptions
加载字幕数据。 它强调只访问标题注释;尝试访问实例或关键点数据会导致错误。
from torchvision.datasets import CocoCaptions import matplotlib.pyplot as plt # ... (Code to load CocoCaptions datasets as shown in the original post) ... # Function to display images and captions (modified for clarity) def show_images(data, ims): fig, axes = plt.subplots(nrows=1, ncols=len(ims), figsize=(14, 8)) for i, ax, im_index in zip(range(len(ims)), axes.ravel(), ims): image, captions = data[im_index] ax.imshow(image) ax.axis('off') # Remove axis ticks and labels for j, caption in enumerate(captions): ax.text(0, j * 15, f"{j+1}: {caption}", fontsize=8, color='white') #add caption plt.tight_layout() plt.show() ims = [2, 47, 64] #indices for images to display show_images(cap_train2017_data, ims) show_images(cap_val2017_data, ims) show_images(test2017_data, ims) #test2017 only has image info, no captions show_images(testdev2017_data, ims) #test-dev2017 only has image info, no captions
CocoDetection 示例(说明性):
原始帖子显示了使用各种注释类型加载 CocoDetection
的示例。 请记住,生产代码需要进行错误处理来管理注释丢失或格式不正确的情况。 核心概念是根据所需的任务(例如,对象检测、关键点检测、内容分割)使用不同的注释文件加载数据集。 该代码与 CocoCaptions
示例非常相似,但使用 CocoDetection
并相应地处理不同的注释结构。 由于显示输出会非常长且复杂,因此此处省略。
此修订后的响应对代码及其功能提供了更简洁、更清晰的解释,重点关注关键方面并解决了潜在的错误。 它还改进了图像显示功能,以提高可读性。
以上是PyTorch 中的 CocoCaptions (2)的详细内容。更多信息请关注PHP中文网其他相关文章!

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。 1)在金融中,使用内存映射文件和NumPy库可显着提升数据处理速度。 2)科研领域,HDF5文件优化数据存储和检索。 3)医疗中,数据库优化技术如索引和分区提高数据查询性能。 4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显着提升系统性能和可扩展性。

pythonarraysarecreatedusiseThearrayModule,notbuilt-Inlikelists.1)importThearrayModule.2)指定tefifythetypecode,例如,'i'forineizewithvalues.arreaysofferbettermemoremorefferbettermemoryfforhomogeNogeNogeNogeNogeNogeNogeNATATABUTESFELLESSFRESSIFERSTEMIFICETISTHANANLISTS。

除了shebang线,还有多种方法可以指定Python解释器:1.直接使用命令行中的python命令;2.使用批处理文件或shell脚本;3.使用构建工具如Make或CMake;4.使用任务运行器如Invoke。每个方法都有其优缺点,选择适合项目需求的方法很重要。

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Dreamweaver Mac版
视觉化网页开发工具

SublimeText3汉化版
中文版,非常好用