搜索
首页后端开发Python教程PyTorch 中的 CocoCaptions (2)

这篇文章演示了如何使用带有 torchvision.datasets.CocoCaptionstorchvision.datasets.CocoDetection 的 MS COCO 数据集。 我们将探索使用数据集的各种子集加载图像字幕和对象检测任务的数据。

下面的示例使用不同的 COCO 注释文件 (captions_*.json, instances_*.json, person_keypoints_*.json, stuff_*.json, panoptic_*.json, image_info_*.json) 以及相应的图像目录 (train2017, val2017test2017)。请注意,CocoDetection 处理不同的注释类型,而 CocoCaptions 主要关注标题。

CocoCaptions 示例:

本节展示如何使用 train2017val2017test2017CocoCaptions 加载字幕数据。 它强调只访问标题注释;尝试访问实例或关键点数据会导致错误。

from torchvision.datasets import CocoCaptions
import matplotlib.pyplot as plt

# ... (Code to load CocoCaptions datasets as shown in the original post) ...

# Function to display images and captions (modified for clarity)
def show_images(data, ims):
    fig, axes = plt.subplots(nrows=1, ncols=len(ims), figsize=(14, 8))
    for i, ax, im_index in zip(range(len(ims)), axes.ravel(), ims):
        image, captions = data[im_index]
        ax.imshow(image)
        ax.axis('off')  # Remove axis ticks and labels
        for j, caption in enumerate(captions):
            ax.text(0, j * 15, f"{j+1}: {caption}", fontsize=8, color='white') #add caption
    plt.tight_layout()
    plt.show()

ims = [2, 47, 64] #indices for images to display

show_images(cap_train2017_data, ims)
show_images(cap_val2017_data, ims)
show_images(test2017_data, ims) #test2017 only has image info, no captions
show_images(testdev2017_data, ims) #test-dev2017 only has image info, no captions

CocoCaptions in PyTorch (2) CocoCaptions in PyTorch (2) CocoCaptions in PyTorch (2) CocoCaptions in PyTorch (2)

CocoDetection 示例(说明性):

原始帖子显示了使用各种注释类型加载 CocoDetection 的示例。 请记住,生产代码需要进行错误处理来管理注释丢失或格式不正确的情况。 核心概念是根据所需的任务(例如,对象检测、关键点检测、内容分割)使用不同的注释文件加载数据集。 该代码与 CocoCaptions 示例非常相似,但使用 CocoDetection 并相应地处理不同的注释结构。 由于显示输出会非常长且复杂,因此此处省略。

此修订后的响应对代码及其功能提供了更简洁、更清晰的解释,重点关注关键方面并解决了潜在的错误。 它还改进了图像显示功能,以提高可读性。

以上是PyTorch 中的 CocoCaptions (2)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用Python查找文本文件的ZIPF分布如何使用Python查找文本文件的ZIPF分布Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

我如何使用美丽的汤来解析HTML?我如何使用美丽的汤来解析HTML?Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

python中的图像过滤python中的图像过滤Mar 03, 2025 am 09:44 AM

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

如何使用Python使用PDF文档如何使用Python使用PDF文档Mar 02, 2025 am 09:54 AM

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

如何在django应用程序中使用redis缓存如何在django应用程序中使用redis缓存Mar 02, 2025 am 10:10 AM

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

如何使用TensorFlow或Pytorch进行深度学习?如何使用TensorFlow或Pytorch进行深度学习?Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python中的平行和并发编程简介Python中的平行和并发编程简介Mar 03, 2025 am 10:32 AM

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

如何在Python中实现自己的数据结构如何在Python中实现自己的数据结构Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具