随着大型语言模型 (LLM) 继续彻底改变我们与人工智能交互的方式,出现了两种关键技术来提高其性能和效率:上下文缓存和检索增强生成 (RAG) 。在这份综合指南中,我们将深入研究这两种方法,了解它们的优点、局限性和理想用例。
目录
- 了解基础知识
- 上下文缓存解释
- 检索增强生成 (RAG) 深入研究
- 实际应用
- 何时使用什么
- 实施注意事项
- 未来趋势
了解基础知识
在深入研究细节之前,让我们先了解一下这些技术为何如此重要。法学硕士虽然功能强大,但在处理实时数据和维护对话上下文方面存在局限性。这就是上下文缓存和 RAG 发挥作用的地方。
上下文缓存解释
上下文缓存就像为您的 AI 提供短期记忆增强。想象一下,您正在与朋友谈论计划去巴黎旅行。您的朋友不需要为每个回复重新阅读他们关于巴黎的全部知识 - 他们会记住您谈话的背景。
上下文缓存的工作原理
- 内存存储:系统存储最近的对话历史记录和相关上下文
- 快速检索:可以更快地访问之前讨论的信息
- 资源优化:减少重新处理类似查询的需要
现实世界的例子
考虑一个电子商务平台的客户服务聊天机器人。当客户问:“这个产品的发货时间是多少?”接下来是“国际配送怎么样?”,上下文缓存可以帮助机器人记住他们正在讨论相同的产品,而不需要客户再次指定。
检索增强生成 (RAG) 深入研究
RAG 就像让您的 AI 助手访问庞大的当前信息库。把它想象成一个研究人员,可以快速参考外部文档以提供准确、最新的信息。
RAG 的关键组件
- 文档索引:相关信息的可搜索数据库
- 检索系统:识别并获取相关信息
- 生成模块:将检索到的信息与模型的知识相结合
现实世界的例子
假设您正在建立一名法律助理。当被问及最近的税法变化时,RAG 使助理能够:
- 搜索最近的法律文件
- 检索相关更新
- 根据现行立法生成准确的响应
何时使用什么
上下文缓存非常适合:
- 需要连续性的会话应用
- 查询量高但上下文相似的应用
- 响应速度至关重要的场景
RAG 非常适合:
- 需要访问当前信息的应用程序
- 处理特定领域知识的系统
- 准确性和验证至关重要的案例
实施最佳实践
上下文缓存实现
class ContextCache: def __init__(self, capacity=1000): self.cache = OrderedDict() self.capacity = capacity def get_context(self, conversation_id): if conversation_id in self.cache: context = self.cache.pop(conversation_id) self.cache[conversation_id] = context return context return None
RAG实施
class RAGSystem: def __init__(self, index_path, model): self.document_store = DocumentStore(index_path) self.retriever = Retriever(self.document_store) self.generator = model def generate_response(self, query): relevant_docs = self.retriever.get_relevant_documents(query) context = self.prepare_context(relevant_docs) return self.generator.generate(query, context)
性能比较
Aspect | Context Caching | RAG |
---|---|---|
Response Time | Faster | Moderate |
Memory Usage | Lower | Higher |
Accuracy | Good for consistent contexts | Excellent for current information |
Implementation Complexity | Lower | Higher |
未来趋势和发展
这些技术的未来看起来充满希望:
- 结合两种技术的混合方法
- 高级缓存算法
- 改进的检索机制
- 增强上下文理解
结论
上下文缓存和 RAG 在提高 LLM 性能方面都有不同的目的。上下文缓存在维护对话流和减少延迟方面表现出色,而 RAG 则在提供准确、最新的信息方面表现出色。它们之间的选择取决于您的具体用例,但通常,两者的组合会产生最佳结果。
标签:#MachineLearning #AI #LLM #RAG #ContextCaching #TechnologyTrends #ArtificialIntelligence
以上是上下文缓存与 RAG的详细内容。更多信息请关注PHP中文网其他相关文章!

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

Python 提供多种从互联网下载文件的方法,可以使用 urllib 包或 requests 库通过 HTTP 进行下载。本教程将介绍如何使用这些库通过 Python 从 URL 下载文件。 requests 库 requests 是 Python 中最流行的库之一。它允许发送 HTTP/1.1 请求,无需手动将查询字符串添加到 URL 或对 POST 数据进行表单编码。 requests 库可以执行许多功能,包括: 添加表单数据 添加多部分文件 访问 Python 的响应数据 发出请求 首

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

自然语言处理(NLP)是人类语言的自动或半自动处理。 NLP与语言学密切相关,并与认知科学,心理学,生理学和数学的研究有联系。在计算机科学

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Dreamweaver CS6
视觉化网页开发工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中