NumPy 提供了使用向量化函数来证明数组的有效方法,与传统的 Python 循环相比,提供了更高的性能和代码简单性。
给定 NumPy数组,任务是将其非零元素向左、向右、向上或向下移动,同时保持其形状。
以下 NumPy 实现执行有效的对齐:
import numpy as np def justify(a, invalid_val=0, axis=1, side='left'): if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if (side=='up') | (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if axis==1: out[justified_mask] = a[mask] else: out.T[justified_mask.T] = a.T[mask.T] return out
此函数沿指定的轴和边(左、右、上、下)对齐 2D 数组。它的工作原理是使用 mask 识别非零元素,使用 sort 对它们进行排序,如果向上或向左对齐则翻转 mask,最后用对齐的值覆盖原始数组。
这是一个使用示例,涵盖了非零元素左:
a = np.array([[1,0,2,0], [3,0,4,0], [5,0,6,0], [0,7,0,8]]) # Cover left covered_left = justify(a, axis=1, side='left') print("Original Array:") print(a) print("\nCovered Left:") print(covered_left)
输出:
Original Array: [[1 0 2 0] [3 0 4 0] [5 0 6 0] [0 7 0 8]] Covered Left: [[1 2 0 0] [3 4 0 0] [5 6 0 0] [7 8 0 0]]
为了证明 N 维数组,可以使用以下函数:
def justify_nd(a, invalid_val, axis, side): pushax = lambda a: np.moveaxis(a, axis, -1) if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if side=='front': justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if (axis==-1) or (axis==a.ndim-1): out[justified_mask] = a[mask] else: pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)] return out
此函数通过沿任意轴对齐 N 维数组来支持更复杂的场景到数组的“前面”或“末尾”。
以上是NumPy 的向量化函数如何有效地证明数组的合理性?的详细内容。更多信息请关注PHP中文网其他相关文章!