首页 >后端开发 >Python教程 >LangGraph 状态机:管理生产中的复杂代理任务流

LangGraph 状态机:管理生产中的复杂代理任务流

Barbara Streisand
Barbara Streisand原创
2024-11-24 03:37:091046浏览

LangGraph State Machines: Managing Complex Agent Task Flows in Production

什么是 LangGraph?

LangGraph是专门为LLM应用程序设计的工作流编排框架。其核心原则是:

  • 将复杂任务分解为状态和转换
  • 管理状态转换逻辑
  • 任务执行过程中各种异常的处理

想想购物:浏览→添加到购物车→结账→付款。 LangGraph 帮助我们有效地管理此类工作流程。

核心概念

1. 国家

状态就像任务执行中的检查点:

from typing import TypedDict, List

class ShoppingState(TypedDict):
    # Current state
    current_step: str
    # Cart items
    cart_items: List[str]
    # Total amount
    total_amount: float
    # User input
    user_input: str

class ShoppingGraph(StateGraph):
    def __init__(self):
        super().__init__()

        # Define states
        self.add_node("browse", self.browse_products)
        self.add_node("add_to_cart", self.add_to_cart)
        self.add_node("checkout", self.checkout)
        self.add_node("payment", self.payment)

2. 状态转换

状态转换定义任务流的“路线图”:

class ShoppingController:
    def define_transitions(self):
        # Add transition rules
        self.graph.add_edge("browse", "add_to_cart")
        self.graph.add_edge("add_to_cart", "browse")
        self.graph.add_edge("add_to_cart", "checkout")
        self.graph.add_edge("checkout", "payment")

    def should_move_to_cart(self, state: ShoppingState) -> bool:
        """Determine if we should transition to cart state"""
        return "add to cart" in state["user_input"].lower()

3. 状态持久化

为了保证系统的可靠性,我们需要持久化状态信息:

class StateManager:
    def __init__(self):
        self.redis_client = redis.Redis()

    def save_state(self, session_id: str, state: dict):
        """Save state to Redis"""
        self.redis_client.set(
            f"shopping_state:{session_id}",
            json.dumps(state),
            ex=3600  # 1 hour expiration
        )

    def load_state(self, session_id: str) -> dict:
        """Load state from Redis"""
        state_data = self.redis_client.get(f"shopping_state:{session_id}")
        return json.loads(state_data) if state_data else None

4. 错误恢复机制

任何步骤都可能失败,我们需要优雅地处理这些情况:

class ErrorHandler:
    def __init__(self):
        self.max_retries = 3

    async def with_retry(self, func, state: dict):
        """Function execution with retry mechanism"""
        retries = 0
        while retries < self.max_retries:
            try:
                return await func(state)
            except Exception as e:
                retries += 1
                if retries == self.max_retries:
                    return self.handle_final_error(e, state)
                await self.handle_retry(e, state, retries)

    def handle_final_error(self, error, state: dict):
        """Handle final error"""
        # Save error state
        state["error"] = str(error)
        # Rollback to last stable state
        return self.rollback_to_last_stable_state(state)

现实示例:智能客户服务系统

让我们看一个实际的例子——智能客服系统:

from langgraph.graph import StateGraph, State

class CustomerServiceState(TypedDict):
    conversation_history: List[str]
    current_intent: str
    user_info: dict
    resolved: bool

class CustomerServiceGraph(StateGraph):
    def __init__(self):
        super().__init__()

        # Initialize states
        self.add_node("greeting", self.greet_customer)
        self.add_node("understand_intent", self.analyze_intent)
        self.add_node("handle_query", self.process_query)
        self.add_node("confirm_resolution", self.check_resolution)

    async def greet_customer(self, state: State):
        """Greet customer"""
        response = await self.llm.generate(
            prompt=f"""
            Conversation history: {state['conversation_history']}
            Task: Generate appropriate greeting
            Requirements:
            1. Maintain professional friendliness
            2. Acknowledge returning customers
            3. Ask how to help
            """
        )
        state['conversation_history'].append(f"Assistant: {response}")
        return state

    async def analyze_intent(self, state: State):
        """Understand user intent"""
        response = await self.llm.generate(
            prompt=f"""
            Conversation history: {state['conversation_history']}
            Task: Analyze user intent
            Output format:
            {{
                "intent": "refund/inquiry/complaint/other",
                "confidence": 0.95,
                "details": "specific description"
            }}
            """
        )
        state['current_intent'] = json.loads(response)
        return state

用法

# Initialize system
graph = CustomerServiceGraph()
state_manager = StateManager()
error_handler = ErrorHandler()

async def handle_customer_query(user_id: str, message: str):
    # Load or create state
    state = state_manager.load_state(user_id) or {
        "conversation_history": [],
        "current_intent": None,
        "user_info": {},
        "resolved": False
    }

    # Add user message
    state["conversation_history"].append(f"User: {message}")

    # Execute state machine flow
    try:
        result = await graph.run(state)
        # Save state
        state_manager.save_state(user_id, result)
        return result["conversation_history"][-1]
    except Exception as e:
        return await error_handler.with_retry(
            graph.run,
            state
        )

最佳实践

  1. 陈述设计原则

    • 保持状态简单明了
    • 仅存储必要的信息
    • 考虑序列化要求
  2. 转换逻辑优化

    • 使用条件转换
    • 避免无限循环
    • 设置最大步数限制
  3. 错误处理策略

    • 实施优雅降级
    • 记录详细信息
    • 提供回滚机制
  4. 性能优化

    • 使用异步操作
    • 实现状态缓存
    • 控制状态大小

常见陷阱和解决方案

  1. 状态爆炸

    • 问题:状态太多导致维护困难
    • 解决方案:合并相似的状态,使用状态组合而不是创建新的
  2. 死锁情况

    • 问题:循环状态转换导致任务挂起
    • 解决方案:添加超时机制和强制退出条件
  3. 状态一致性

    • 问题:分布式环境中状态不一致
    • 解决方案:使用分布式锁和事务机制

概括

LangGraph 状态机为管理复杂的 AI Agent 任务流提供了强大的解决方案:

  • 清晰的任务流程管理
  • 可靠的状态持久性
  • 全面的错误处理
  • 灵活的扩展性

以上是LangGraph 状态机:管理生产中的复杂代理任务流的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn