多处理中的共享内存:了解引用计数和复制行为
使用多处理时,会出现有关共享数据处理的重大问题。为了详细说明,请考虑这样一个场景:程序初始化消耗大量内存的大量数据结构,例如位数组和整数数组。随后,为了执行某些计算,程序会启动多个需要访问这些共享数据结构的子进程。
问题出现了:每个子进程是否会创建这些大型数据结构的单独副本,从而导致不必要的开销,还是它们会共享数据的单个副本,从而保留内存资源?
Linux 中的写时复制和引用计数
Linux 采用“写入时复制”策略,这意味着仅当子进程尝试修改数据时才会复制数据。这种机制通常会消除不必要的重复,确保有效的内存利用。然而,引用计数在这里发挥了作用。 Python 中的每个对象都有一个引用计数,它代表当前正在引用该对象的子进程的数量。
访问对象时,操作系统会递增其引用计数。相反,当子进程终止或释放对对象的引用时,引用计数就会递减。如果引用计数达到零,操作系统将释放分配给该对象的内存。
多处理期间复制对象
不幸的是,这不仅仅是复制-写入机制,确定在多处理期间对象是否重复。引用计数也起着至关重要的作用。即使 Linux 使用写时复制,访问对象的行为也会增加其引用计数,如果引用计数超过操作系统设置的阈值,就会触发对象的复制。
举例说明对于这种行为,请考虑以下示例。假设您定义一个函数,该函数从三个列表(位数组、数组 1 和数组 2)读取值并将结果返回给父进程。尽管该函数本身不修改列表,但当在子进程中调用该函数时,每个列表的引用计数都会增加。引用计数的增加足以触发每个子进程的整个列表的复制。
防止不必要的复制
为了避免共享数据结构的意外复制,可以选择禁用特定对象的引用计数。然而,由于多种原因,这种方法并不可取。首先,引用计数是Python内存管理的一个组成部分,禁用它可能会导致内存泄漏和其他问题。其次,在某些场景下,子流程可能需要修改其本地数据副本,在这种情况下,引用计数对于同步更改至关重要。
替代解决方案
不要禁用引用计数,而是考虑利用共享内存对象,它提供了一种专用机制,可以在多个进程之间共享数据,而无需复制底层数据。 Python 提供了一个名为“multiprocessing.shared_memory”的库,可以创建和操作共享内存对象。
总而言之,虽然 Linux 的写时复制策略旨在优化多处理期间的内存使用,但必须考虑处理大型数据结构时引用计数的影响。采用共享内存对象可以有效解决这个问题,保证高效的内存利用和最佳的性能。
以上是引用计数和写时复制如何影响 Python 多处理中的共享内存行为?的详细内容。更多信息请关注PHP中文网其他相关文章!

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

记事本++7.3.1
好用且免费的代码编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版