基于值范围和标识符合并 Pandas 数据帧
在 pandas 中,可以使用基于范围的条件和标识符来实现合并数据帧通过合并和过滤操作的组合。然而,在处理大型数据集时,这种方法可能效率低下。利用 SQL 的另一种方法可以提供更好的性能。
让我们考虑一个示例,其中我们有两个数据帧 A 和 B。数据帧 A 包含日期 (fdate) 和标识符 (cusip),而数据帧 B 包含日期(namedt 和 nameenddt)和相同的标识符 (ncusip)。我们的目标是合并这些数据帧,其中 A 中的 fdate 落在 B 中的 namet 和 nameenddt 定义的日期范围内。
以下 Python 代码演示了传统的 pandas 方法:
<code class="python">df = pd.merge(A, B, how='inner', left_on='cusip', right_on='ncusip') df = df[(df['fdate']>=df['namedt']) & (df['fdate']<=df['nameenddt'])]</code>
虽然这种方法有效,但它涉及无条件合并数据帧,然后根据日期条件进行过滤,这对于大型数据集来说计算成本可能很高。
另一种方法是使用 SQL 查询:
<code class="python">import pandas as pd import sqlite3 # Create a temporary database in memory conn = sqlite3.connect(':memory:') # Write the dataframes to tables A.to_sql('table_a', conn, index=False) B.to_sql('table_b', conn, index=False) # Construct the SQL query query = ''' SELECT * FROM table_a JOIN table_b ON table_a.cusip = table_b.ncusip WHERE table_a.fdate BETWEEN table_b.namedt AND table_b.nameenddt ''' # Execute the query and create a Pandas dataframe df = pd.read_sql_query(query, conn)</code>
这种方法有几个优点:
总之,利用 SQL 根据基于范围的条件和标识符合并数据帧比传统的 Pandas 操作具有性能优势,特别是对于较大的数据集。
以上是如何根据值范围和标识符有效合并 Pandas Dataframe?的详细内容。更多信息请关注PHP中文网其他相关文章!