在当今世界,我们被信息轰炸,能够从广泛的内容中提取有意义的见解比以往任何时候都更加重要。无论您是数据科学家、研究人员还是开发人员,拥有正确的工具都可以帮助您将复杂的文档分解为关键元素。这就是 KeyBERT 的用武之地——一个强大的 Python 库,旨在使用 BERT 嵌入技术提取关键字和关键短语。
什么是 keyBERT?
上下文理解:KeyBERT 利用 BERT 嵌入,这意味着它捕获单词之间的上下文关系。它们还使用余弦相似性来检查上下文的相似性,从而产生更相关和更有意义的关键字。
可定制性:该库允许您自定义各种参数,例如 n-gram、停用词、更改模型、使用与之集成的 open ai 以及要提取的关键字数量,使其适应广泛的范围应用程序。
易于使用:KeyBERT 设计为用户友好型,使初学者和经验丰富的开发人员能够通过最少的设置快速入门。
KeyBERT 入门
在开始使用 keyBERT 之前,您必须在设备上安装 python。现在,您可以使用 pip 轻松安装 keyBERT 库
pip install keybert
安装后,在代码编辑器中创建一个新的 python 文件并使用下面的代码片段来测试库
from keybert import KeyBERT # Initialize KeyBERT kw_model = KeyBERT() # Sample document doc = "Machine learning is a fascinating field of artificial intelligence that focuses on the development of algorithms." # Extract keywords keywords = kw_model.extract_keywords(doc, top_n=5) # Print the keywords print(keywords)
在此示例中,KeyBERT 处理输入文档并提取前五个相关关键字。
应用领域
- 了解偏好:这可用于根据用户在任何平台上的阅读情况来收集用户偏好,例如新闻文章、书籍或研究论文。
- 内容创建:博主和营销人员可以使用 KeyBERT 查找互联网上的热门话题并优化其内容。
结论
在数据丰富的世界中,像 keyBERT 这样的工具可以从中提取有价值的信息。通过使用 keyBERT,您有可能从文本数据中提取隐藏信息。我推荐 KeyBERT,因为它的用户界面友好,因为我亲自使用它完成了一个项目。
官方文档链接
keyBERT 文档链接
以上是改变您的文本分析之旅:KeyBERT 如何改变关键字提取的游戏规则!的详细内容。更多信息请关注PHP中文网其他相关文章!

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python 提供多种从互联网下载文件的方法,可以使用 urllib 包或 requests 库通过 HTTP 进行下载。本教程将介绍如何使用这些库通过 Python 从 URL 下载文件。 requests 库 requests 是 Python 中最流行的库之一。它允许发送 HTTP/1.1 请求,无需手动将查询字符串添加到 URL 或对 POST 数据进行表单编码。 requests 库可以执行许多功能,包括: 添加表单数据 添加多部分文件 访问 Python 的响应数据 发出请求 首

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

自然语言处理(NLP)是人类语言的自动或半自动处理。 NLP与语言学密切相关,并与认知科学,心理学,生理学和数学的研究有联系。在计算机科学

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Atom编辑器mac版下载
最流行的的开源编辑器