编辑 | KX
AI 技术在辅助抗体设计方面取得了巨大进步。然而,抗体设计仍然严重依赖于从血清中分离抗原特异性抗体,这是一个资源密集且耗时的过程。
为了解决这个问题,腾讯 AI Lab、北京大学深圳研究生院和西京消化病医院研究团队提出了一种预训练抗体生成大语言模型(PALM-H3),用于从头生成具有所需抗原结合特异性的人工抗体CDRH3,减少对天然抗体的依赖。
此外,还设计了一个高精度的抗原-抗体结合预测模型 A2binder,将抗原表位序列与抗体序列配对,从而预测结合特异性和亲和力。
总之,该研究建立了一个用于抗体生成和评估的人工智能框架,这有可能显着加速抗体药物的开发。
相关研究以「De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model」为题,于8 月10 日发布在《Nature Communications》上。
抗体药物,又称单克隆抗体,在生物治疗中发挥着至关重要的作用。通过模仿免疫系统的作用,这些药物可以选择性地针对病毒和癌细胞等致病因子。与传统治疗方法相比,抗体药物是一种更具体、更有效的方法。抗体药物在治疗多种疾病方面已显示出积极的效果。
开发抗体药物是一个复杂的过程,包括从动物源中分离抗体,使其人性化,并优化其亲和力。但抗体药物的开发仍然严重依赖于天然抗体。
蛋白质的序列数据可以看作是一种语言,因此自然语言处理(NLP)领域的大规模预训练模型已被用来学习蛋白质的表征模式。当前已经开发了多种蛋白质语言模型。然而,由于抗体的多样性高和可用的抗原抗体配对数据稀缺,生成对特定抗原表位具有高亲和力的抗体仍然是一项具有挑战性的任务。
为了应对上述挑战,腾讯AI Lab 团队提出了预训练抗体生成大型语言模型PALM-H3,用于优化和生成重链互补决定区3 (CDRH3),该区域在抗体的特异性和多样性中起着至关重要的作用。
为了评估 PALM-H3 产生的抗体对抗原的亲和力,研究人员结合使用了抗原抗体对接和基于 AI 的方法。
研究人员还开发了用于评估抗体-抗原亲和力的 A2binder。 A2binder 能够实现准确且可推广的亲和力预测,即使对于未知抗原也是如此。
PALM-H3 和 A2Binder 的框架
PALM-H3 和 A2binder 的工作流程和模型框架如下图所示。
PALM-H3 的目的是生成抗体中的从头 CDRH3 序列。 CDRH3 区域在决定抗体对特定抗原序列的结合特异性方面起着最重要的作用。 PALM-H3 是一个类似 transformer 的模型,它使用基于 ESM2 的抗原模型作为编码器,使用抗体 Roformer 作为解码器。研究还构建了 A2binder 来预测人工生成的抗体的结合亲和力。
PALM-H3 和 A2binder 的构建包括三个步骤:首先,研究人员分别在未配对的抗体重链和轻链序列上预训练两个 Roformer 模型。然后,基于预训练的 ESM2、抗体重链 Roformer 和抗体轻链 Roformer 构建 A2binder,并使用配对亲和力数据对其进行训练。最后,使用预训练的 ESM2 和抗体重链 Roformer 构建 PALM-H3,并在配对抗原-CDRH3 数据上对其进行训练,以从头生成 CDRH3。
A2binder 可以准确预测抗原抗体结合概率、亲和力
通过将 A2binder 预测亲和力的能力与几种基线方法进行比较来评估其性能。
A2binder 在亲和力数据集上表现出色,部分原因在于抗体序列的预训练,这使得 A2binder 能够学习这些序列中存在的独特模式。
结果表明,在所有抗原抗体亲和力预测数据集上,A2binder 的表现均优于基线模型 ESM-F(后者具有相同的框架,但预训练模型被 ESM2 取代),这表明使用抗体序列进行预训练可能对相关的下游任务有益。
为了评估模型在预测亲和力值方面的表现,研究人员还利用了两个包含亲和力值标签的数据集 14H 和 14L。
A2binder 在 Pearson 相关性和 Spearman 相关性指标上均优于所有基线模型。A2binder 在 14H 数据集上实现了 0.642 的 Pearson 相关性(提高了 3%),在 14L 数据集上实现了 0.683(提高了 1%)。
然而,与其他数据集相比,A2binder 和其他基线模型在 14H 和 14L 数据集上的性能略有下降。这一观察结果与以前的研究一致。
PALM-H3 在生成高结合概率抗体方面表现优异
研究人员探索了 PALM-H3 产生的抗体与天然抗体之间的差异。发现它们的序列存在显著差异,但产生的抗体的结合概率并没有受到这些差异的显著影响。同时,它们的结构差异确实导致结合亲和力的下降。这些结果与之前关于抗体库网络分析和功能性蛋白质序列生成的研究一致。
总体而言,结果表明,尽管与天然抗体不同,但 PALM-H3 能够生成具有高结合亲和力的多种抗体序列。
此外,研究人员通过 ClusPro 和 SnugDock 验证了 PALM-H3 的性能。PALM-H3 能够生成针对 SARS-CoV-2 HR2 区稳定肽的抗体 CDRH3 序列。它生成了新的 CDRH3 序列,并且验证了生成的序列 GRREAAWALA 与天然 CDHR3 序列 GKAAGTFDS 相比,对抗原稳定肽的靶向性有所改善。
此外,PALM-H3 能够生成对新出现的 SARS-CoV-2 变体 XBB 具有更高亲和力的抗体 CDRH3 序列。生成的序列 AKDSRTSPLRLDYS 对 XBB 的亲和力比其来源 ASEVLDNLRDGYNF 更强。
此外,PALM-H3 不仅克服了传统顺序突变策略面临的局部最优陷阱,而且与 E-EVO 方法相比,它还能产生具有更高抗原结合亲和力的抗体。这凸显了 PALM-H3 在抗体设计方面的优势,能够更有效地探索序列空间并生成针对特定表位的高亲和力结合物。
体外实验
此外,研究人员还进行了体外试验,包括蛋白质印迹、表面等离子体共振分析和假病毒中和试验,为 PALM-H3 设计抗体的有效性提供了关键验证。
PALM-H3 产生的针对 SARS-CoV-2 野生型、Alpha、Delta 和 XBB 变体刺突蛋白的两种抗体在这些试验中都实现了比天然抗体更高的结合亲和力和中和效力。这些湿实验室实验的有力经验结果补充了计算预测和分析,验证了 PALM-H3 和 A2binder 在生成和选择对已知和新抗原具有高特异性和亲和力的强效抗体方面的能力。
总之,提出的 PALM-H3 集成了大规模抗体预训练的能力和全局特征融合的有效性,从而具有卓越的亲和力预测性能和设计高亲和力抗体的能力。此外,直接序列生成和可解释的权重可视化使其成为设计高亲和力抗体的有效且可解释的工具。
以上是从头设计抗体,腾讯、北大团队预训练大语言模型登Nature子刊的详细内容。更多信息请关注PHP中文网其他相关文章!

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

本文将介绍一种通过BEVSketch布局来精确生成多视角街景图片的方法在自动驾驶领域,图像合成被广泛应用于提升下游感知任务的性能在计算机视觉领域,提升感知模型性能的一个长期存在的研究难题是通过合成图像来实现。在以视觉为中心的自动驾驶系统中,使用多视角摄像头,这个问题变得更加突出,因为有些长尾场景是永远无法收集到的根据图1(a)所示,现有的生成方法将语义分割风格的BEV结构输入生成网络,并输出合理的多视角图像。在仅根据场景级指标进行评估时,现有方法似乎能合成照片般逼真的街景图像。然而,一旦放大,我


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

WebStorm Mac版
好用的JavaScript开发工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。