搜索
首页科技周边人工智能Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

编辑 | 萝卜皮

蛋白质复合物结构预测在药物研发、抗体设计等应用中发挥着重要作用,然而由于预测精度有限,预测结果与实验结果经常出现不一致。

北京大学、昌平实验室以及哈佛大学的研究团队提出了 ColabDock,这是一个通用框架,它采用深度学习结构预测模型来整合不同形式和来源的实验约束,而无需进一步进行大规模的再训练或微调。

ColabDock 的表现优于使用 AlphaFold2 作为结构预测模型的 HADDOCK 和 ClusPro,不止在具有模拟残基和表面限制的复杂结构预测中,在借助核磁共振化学位移扰动以及共价标记进行的结构预测中也是如此。

另外,它还可以通过模拟界面扫描限制来帮助抗体-抗原界面预测。

该研究以「Integrated structure prediction of protein–protein docking with experimental restraints using ColabDock」为题,于 2024 年 8 月 5 日发布在《Nature Machine Intelligence》。

Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

蛋白质对接为理解生物机制提供了重要的结构信息。尽管深度模型在蛋白质结构预测方面发展迅速,但大多数模型都是以自由对接的方式进行预测,这可能会导致实验约束与预测结构不一致。

为了解决这个问题,北京大学、昌平实验室等机构的研究团队提出了用于受限复合物构象预测的通用框架——ColabDock,它是一个由稀疏实验约束引导的蛋白质-蛋白质对接的通用框架。

通过梯度反向传播,该方法有效地整合了实验约束的先验和数据驱动的蛋白质结构预测模型的能量景观,自动搜索满足两者的构象,同时容忍约束中的冲突或模糊性。

ColabDock 可以利用不同形式和来源的实验约束,而无需进一步进行大规模重新训练或微调。

Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

图示:ColabDock 的工作流程。(来源:论文)

该框架包含两个阶段:生成阶段和预测阶段。

在生成阶段,ColabDock 采用了基于 AlphaFold2 开发的蛋白质设计框架 ColabDesign。在 logit 空间中优化输入序列配置文件,以指导结构预测模型根据给定的实验约束和模板生成复杂结构,同时最大化 pLDDT 和 pAE 测量。

在预测阶段,根据生成的复合物结构和给定的模板预测结构。对于每个目标,ColabDock 会执行多次运行并生成不同的构象。最终构象由排序支持向量机 (SVM) 算法选择。

性能稳健

作为概念验证,研究人员采用 AlphaFold2  作为 ColabDock 中的结构预测模型。当然,这里也可以使用其他数据驱动的深度学习模型,例如 RoseTTAFold2 和 AF-Multimer。

研究人员用合成数据集和几种类型的实验约束上测试 ColabDock,包括 NMR 化学位移扰动 (CSP)、共价标记 (CL) 和模拟深度突变扫描 (DMS)。

Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

图示:ColabDock 在验证集上的表现。(来源:论文)

ColabDock 评估了两种类型的约束,即 1v1 和 MvN 约束。前者是残基-残基级别的,实例包括来自 XL-MS 的约束。后者是界面级别的,与 NMR 和 CL 实验有关。

在合成数据集上的测试结果表明 ColabDock 取得了令人满意的性能。此外,正如预期的那样,随着约束数量的增加,ColabDock 的性能也得到了提高。

即使只有很少的限制,ColabDock 在基准数据集和相同的框架设置上的表现也优于 AF-Multimer,并且在提供更多限制的情况下收敛到更少的构象,表明有效应用了附加信息。

Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

图示:在基准测试集上对 ColabDock、HADDOCK 和 ClusPro 进行比较。(来源:论文)

Compared with HADDOCK and ClusPro, ColabDock performs better when the constraint quality is higher. On both experimental datasets, ColabDock still outperforms HADDOCK and ClusPro regardless of the number and quality of constraints provided.

Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

Illustration: Performance and constraint analysis of ColabDock on CSP set. (Source: paper)

Finally, the researchers evaluated the performance of different docking methods on the antibody-antigen data set. ColabDock predicted a much higher proportion of medium or higher quality structures than HADDOCK and ClusPro.

Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距

Illustration: Comparison of ColabDock, HADDOCK and ClusPro on the antibody-antigen benchmark set. (Source: paper)

This shows that ColabDock has potential application value in antibody design. Moreover, ColabDock still shows comparable or even better performance than AF-Multimer on the newly released unbiased dataset.

Limitations and Conclusion

ColabDock also has some limitations. Currently, ColabDock can only accept distances smaller than 22 Å, which is determined by the upper limit of the distance map in AlphaFold2. This limitation renders the model applicable to only a small subset of XL-MS reagents.

Without fragment-based optimization, ColabDock can only process complexes of less than 1,200 residues on an NVIDIA A100 graphics processing unit (GPU) due to limited memory.

In addition, this method can be very time-consuming, especially for large protein complexes. Using the bfloat16 floating point format version of AlphaFold2 is expected to help save memory and speed up calculations.

I believe that in the future, after researchers iteratively optimize it, as a unified framework, ColabDock will be able to help bridge the gap between experimental and computational protein science.

Paper link:https://www.nature.com/articles/s42256-024-00873-z


以上是Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
AI技能差距正在减慢供应链AI技能差距正在减慢供应链Apr 26, 2025 am 11:13 AM

经常使用“ AI-Ready劳动力”一词,但是在供应链行业中确实意味着什么? 供应链管理协会(ASCM)首席执行官安倍·埃什肯纳齐(Abe Eshkenazi)表示,它表示能够评论家的专业人员

一家公司如何悄悄地努力改变AI一家公司如何悄悄地努力改变AIApr 26, 2025 am 11:12 AM

分散的AI革命正在悄悄地获得动力。 本周五在德克萨斯州奥斯汀,Bittensor最终游戏峰会标志着一个关键的时刻,将分散的AI(DEAI)从理论转变为实际应用。 与闪闪发光的广告不同

NVIDIA释放NEMO微服务以简化AI代理开发NVIDIA释放NEMO微服务以简化AI代理开发Apr 26, 2025 am 11:11 AM

企业AI面临数据集成挑战 企业AI的应用面临一项重大挑战:构建能够通过持续学习业务数据来保持准确性和实用性的系统。NeMo微服务通过创建Nvidia所描述的“数据飞轮”来解决这个问题,允许AI系统通过持续接触企业信息和用户互动来保持相关性。 这个新推出的工具包包含五个关键微服务: NeMo Customizer 处理大型语言模型的微调,具有更高的训练吞吐量。 NeMo Evaluator 提供针对自定义基准的AI模型简化评估。 NeMo Guardrails 实施安全控制,以保持合规性和适当的

AI为艺术与设计的未来描绘了一幅新图片AI为艺术与设计的未来描绘了一幅新图片Apr 26, 2025 am 11:10 AM

AI:艺术与设计的未来画卷 人工智能(AI)正以前所未有的方式改变艺术与设计领域,其影响已不仅限于业余爱好者,更深刻地波及专业人士。AI生成的艺术作品和设计方案正在迅速取代传统的素材图片和许多交易性设计活动中的设计师,例如广告、社交媒体图片生成和网页设计。 然而,专业艺术家和设计师也发现AI的实用价值。他们将AI作为辅助工具,探索新的美学可能性,融合不同的风格,创造新颖的视觉效果。AI帮助艺术家和设计师自动化重复性任务,提出不同的设计元素并提供创意输入。 AI支持风格迁移,即将一种图像的风格应用

Zoom如何彻底改变与Agent AI的合作:从会议到里程碑Zoom如何彻底改变与Agent AI的合作:从会议到里程碑Apr 26, 2025 am 11:09 AM

Zoom最初以其视频会议平台而闻名,它通过创新使用Agentic AI来引领工作场所革命。 最近与Zoom的CTO XD黄的对话揭示了该公司雄心勃勃的愿景。 定义代理AI 黄d

对大学的存在威胁对大学的存在威胁Apr 26, 2025 am 11:08 AM

AI会彻底改变教育吗? 这个问题是促使教育者和利益相关者的认真反思。 AI融入教育既提出了机遇和挑战。 正如科技Edvocate的马修·林奇(Matthew Lynch)所指出的那样

原型:美国科学家正在国外寻找工作原型:美国科学家正在国外寻找工作Apr 26, 2025 am 11:07 AM

美国科学研究和技术发展或将面临挑战,这或许是由于预算削减导致的。据《自然》杂志报道,2025年1月至3月期间,美国科学家申请海外工作的数量比2024年同期增加了32%。此前一项民意调查显示,75%的受访研究人员正在考虑前往欧洲和加拿大寻找工作。 过去几个月,数百项NIH和NSF的拨款被终止,NIH今年的新拨款减少了约23亿美元,下降幅度接近三分之一。泄露的预算提案显示,特朗普政府正在考虑大幅削减科学机构的预算,削减幅度可能高达50%。 基础研究领域的动荡也影响了美国的一大优势:吸引海外人才。35

所有有关打开AI最新的GPT 4.1家庭的信息 - 分析Vidhya所有有关打开AI最新的GPT 4.1家庭的信息 - 分析VidhyaApr 26, 2025 am 10:19 AM

Openai推出了强大的GPT-4.1系列:一个专为现实世界应用设计的三种高级语言模型家族。 这种巨大的飞跃提供了更快的响应时间,增强的理解和大幅降低了成本

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能