Vercel AI SDK 可以轻松与 OpenAI、Anthropic 等 LLM API 进行交互,并传输数据,以便在加载时快速显示在您的 Web 应用程序中。在本文中,我们将学习如何同时运行多个提示并并行查看它们的结果。
TL;DR:GitHub 存储库在这里。
在 Web 应用程序中同时运行多个数据获取请求的情况并不罕见。例如,在假设的博客系统中,当仪表板界面加载时,我们可能希望同时获取用户的个人资料数据、他们创建的帖子以及他们收藏的其他用户的帖子。
如果同一个仪表板同时向 OpenAI 发出请求,我们可能希望同时向 OpenAI 询问有关改善用户个人资料的提示,并同时分析他们的最新帖子。理论上,如果我们愿意的话,我们可以并行使用数十个人工智能请求(即使来自完全不同的平台和模型),并分析信息、生成内容并同时执行所有类型的其他任务。
您可以在此处克隆包含最终结果的 GitHub 存储库。
从头开始设置:
完成所有工作的主要组件将包含一个表单和一些用于输出的容器。使用一些基本的 shadcn-ui 组件,表单将如下所示:
export function GenerationForm() { // State and other info will be defined here... return ( <form onSubmit={onSubmit} className="flex flex-col gap-3 w-full"> <div className="inline-block mb-4 w-full flex flex-row gap-1"> <Button type="submit">Generate News & Weather</Button> </div> {isGenerating ? ( <div className="flex flex-row w-full justify-center items-center p-4 transition-all"> <Spinner className="h-6 w-6 text-slate-900" /> </div> ) : null} <h3 className="font-bold">Historical Weather</h3> <div className="mt-4 mb-8 p-4 rounded-md shadow-md bg-blue-100"> {weather ? weather : null} </div> <h4 className="font-bold">Historical News</h4> <div className="mt-4 p-4 rounded-md shadow-md bg-green-100">{news ? news : null}</div> </form> ) }
你可以看到我们这里有一些东西:
现在您可以对这些值进行硬编码;它们都会从我们的信息流中删除。
streamAnswer 服务器操作将完成创建和更新我们的流的工作。
动作的结构是这样的:
export async function streamAnswer(question: string) { // Booleans for indicating whether each stream is currently streaming const isGeneratingStream1 = createStreamableValue(true); const isGeneratingStream2 = createStreamableValue(true); // The current stream values const weatherStream = createStreamableValue(""); const newsStream = createStreamableValue(""); // Create the first stream. Notice that we don't use await here, so that we // don't block the rest of this function from running. streamText({ // ... params, including the LLM prompt }).then(async (result) => { // Read from the async iterator. Set the stream value to each new word // received. for await (const value of result.textStream) { weatherStream.update(value || ""); } } finally { // Set isGenerating to false, and close that stream. isGeneratingStream1.update(false); isGeneratingStream1.done(); // Close the given stream so the request doesn't hang. weatherStream.done(); } }); // Same thing for the second stream. streamText({ // ... params }).then(async (result) => { // ... }) // Return any streams we want to read on the client. return { isGeneratingStream1: isGeneratingStream1.value, isGeneratingStream2: isGeneratingStream2.value, weatherStream: weatherStream.value, newsStream: newsStream.value, }; }
表单的 onSubmit 处理程序将完成这里的所有工作。以下是其工作原理的详细说明:
"use client"; import { SyntheticEvent, useState } from "react"; import { Button } from "./ui/button"; import { readStreamableValue, useUIState } from "ai/rsc"; import { streamAnswer } from "@/app/actions"; import { Spinner } from "./svgs/Spinner"; export function GenerationForm() { // State for loading flags const [isGeneratingStream1, setIsGeneratingStream1] = useState<boolean>(false); const [isGeneratingStream2, setIsGeneratingStream2] = useState<boolean>(false); // State for the LLM output streams const [weather, setWeather] = useState<string>(""); const [news, setNews] = useState<string>(""); // We'll hide the loader when both streams are done. const isGenerating = isGeneratingStream1 || isGeneratingStream2; async function onSubmit(e: SyntheticEvent) { e.preventDefault(); // Clear previous results. setNews(""); setWeather(""); // Call the server action. The returned object will have all the streams in it. const result = await streamAnswer(question); // Translate each stream into an async iterator so we can loop through // the values as they are generated. const isGeneratingStream1 = readStreamableValue(result.isGeneratingStream1); const isGeneratingStream2 = readStreamableValue(result.isGeneratingStream2); const weatherStream = readStreamableValue(result.weatherStream); const newsStream = readStreamableValue(result.newsStream); // Iterate through each stream, putting its values into state one by one. // Notice the IIFEs again! As on the server, these allow us to prevent blocking // the function, so that we can run these iterators in parallel. (async () => { for await (const value of isGeneratingStream1) { if (value != null) { setIsGeneratingStream1(value); } } })(); (async () => { for await (const value of isGeneratingStream2) { if (value != null) { setIsGeneratingStream2(value); } } })(); (async () => { for await (const value of weatherStream) { setWeather((existing) => (existing + value) as string); } })(); (async () => { for await (const value of newsStream) { setNews((existing) => (existing + value) as string); } })(); } return ( // ... The form code from before. ); }
以上是使用 Vercel AI SDK 实现多个并行 AI 流的详细内容。更多信息请关注PHP中文网其他相关文章!