搜索
首页科技周边人工智能自动驾驶场景中的长尾问题怎么解决?

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。

自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。

自动驾驶中的边缘场景

"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件因为出现率较低且比较特殊,因此在数据集中经常被遗漏。 虽然人类天生擅长处理边缘情况,但人工智能却不是这样。可能引起边缘场景的因素有:带有突起的卡车或异形车辆、车辆急转弯、在拥挤的人群中行驶、乱穿马路的行人、极端天气或极差光照条件、打伞的人,人在车后搬箱子、树倒在路中央等等。

例子:

  1. 放透明薄膜在车前,透明物体是否可以被识别,车辆是否会减速
  2. 激光雷达公司Aeye就做了一次挑战,自动驾驶如何处理一个漂浮在路中央的气球。L4级无人驾驶汽车往往偏向避免碰撞,在这种情况下,它们会采取规避动作或者踩刹车,来避免不必要的事故。而气球是个软性的物体,可以直接无障碍的通过。

解决长尾问题的方法

合成数据是个大概念,而感知数据(nerf, camera/sensor sim)只是其中一个比较出众的分支。在业界,合成数据在longtail behavior sim早已成为标准答案。合成数据,或者说sparse signal upsampling是解决长尾问题的第一性解法之一。长尾能力是模型泛化能力与数据内含信息量的乘积。

特斯拉解决方案:

用合成数据(synthetic data)生成边缘场景来扩充数据集
数据引擎的原理:首先,检测现有模型中的不准确之处,随后将此类案例添加到其单元测试中。它还收集更多类似案例的数据来重新训练模型。这种迭代方法允许它捕获尽可能多的边缘情况。制作边缘案例的主要挑战是收集和标注边缘情况的成本比较高,再一个就是收集行为有可能非常危险甚至无法实现。

NVIDIA解决方案:

NVIDIA最近提出了一种名为“模仿训练”的战略方法(下图)。在这种方法中,真实世界中的系统故障案例在模拟环境中被重新现,然后将它们用作自动驾驶汽车的训练数据。重复此循环,直到模型的性能收敛。 这种方法的目标是通过不断模拟故障场景来提高自动驾驶系统的鲁棒性。模拟训练使得开发者能够更好地了解和解决现实世界中不同的故障情况。此外,它还可以快速生成大量的训练数据,以便改善模型的性能。 通过重复这一循环,

自动驾驶场景中的长尾问题怎么解决?

以下实际场景中由于卡车高度过高(上)、车辆凸出部分遮挡后车(下)导致模型输出时车框丢失,成为边缘场景,通过NVIDIA改进后的模型可以在此边缘情况下生成正确的边界框。

自动驾驶场景中的长尾问题怎么解决?

一些思考:

Q:合成数据是否有价值?

A: 这里的价值分为两种 , 第一种是测试有效性, 即在生成的场景中测试 是否能发现探测算法中的一些不足, 第二种是训练有效性, 即生成的场景用于算法的训练是否也能够有效提升性能。

Q: 如何使用虚拟数据提升性能?虚拟数据真的有必要添加到训练集中去吗?添加进去了是否会产生性能回退?

A: 这些问题都难以回答, 于是产生了很多不一样的提高训练精度的方案:

  • 混合训练:在真实数据中添加不同比例的虚拟数据, 以求性能提升,
  • Transfer Learning:使用真实数据预训练好的模型,然后Freeze 某些layer, 再添加混合数据进行训练。
  • Imitation Learning:针对性设计一些模型失误的场景, 并由此产生一些数据,进而逐步提升模型的性能, 这一点也是非常自然的。在实际的数据采集和模型训练中, 也是针对性采集一些补充数据, 进而提升性能。

一些扩展:

为了彻底评估 AI 系统的稳健性,单元测试必须包括一般情况和边缘情况。然而,某些边缘案例可能无法从现有的真实世界数据集中获得。为此,人工智能从业者可以使用合成数据进行测试。

一个例子是ParallelEye-CS,这是一种用于测试自动驾驶汽车视觉智能的合成数据集。与使用真实世界数据相比,创建合成数据的好处是可以对每个图像的场景进行多维度控制。

合成数据将作为生产 AV 模型中边缘情况的可行解决方案。它用边缘案例补充现实世界的数据集,确保 AV 即使在异常事件下也能保持稳健。它也比真实世界的数据更具可扩展性,更不容易出错,并且更便宜。

以上是自动驾驶场景中的长尾问题怎么解决?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
外推指南外推指南Apr 15, 2025 am 11:38 AM

介绍 假设有一个农民每天在几周内观察农作物的进展。他研究了增长率,并开始思考他的植物在几周内可以生长的高度。从Th

软AI的兴起及其对当今企业的意义软AI的兴起及其对当今企业的意义Apr 15, 2025 am 11:36 AM

软AI(被定义为AI系统,旨在使用近似推理,模式识别和灵活的决策执行特定的狭窄任务 - 试图通过拥抱歧义来模仿类似人类的思维。 但是这对业务意味着什么

为AI前沿的不断发展的安全框架为AI前沿的不断发展的安全框架Apr 15, 2025 am 11:34 AM

答案很明确 - 只是云计算需要向云本地安全工具转变,AI需要专门为AI独特需求而设计的新型安全解决方案。 云计算和安全课程的兴起 在

生成AI的3种方法放大了企业家:当心平均值!生成AI的3种方法放大了企业家:当心平均值!Apr 15, 2025 am 11:33 AM

企业家,并使用AI和Generative AI来改善其业务。同时,重要的是要记住生成的AI,就像所有技术一样,都是一个放大器 - 使得伟大和平庸,更糟。严格的2024研究O

Andrew Ng的新简短课程Andrew Ng的新简短课程Apr 15, 2025 am 11:32 AM

解锁嵌入模型的力量:深入研究安德鲁·NG的新课程 想象一个未来,机器可以完全准确地理解和回答您的问题。 这不是科幻小说;多亏了AI的进步,它已成为R

大语言模型(LLM)中的幻觉是不可避免的吗?大语言模型(LLM)中的幻觉是不可避免的吗?Apr 15, 2025 am 11:31 AM

大型语言模型(LLM)和不可避免的幻觉问题 您可能使用了诸如Chatgpt,Claude和Gemini之类的AI模型。 这些都是大型语言模型(LLM)的示例,在大规模文本数据集上训练的功能强大的AI系统

60%的问题 -  AI搜索如何消耗您的流量60%的问题 - AI搜索如何消耗您的流量Apr 15, 2025 am 11:28 AM

最近的研究表明,根据行业和搜索类型,AI概述可能导致有机交通下降15-64%。这种根本性的变化导致营销人员重新考虑其在数字可见性方面的整个策略。 新的

麻省理工学院媒体实验室将人类蓬勃发展成为AI R&D的核心麻省理工学院媒体实验室将人类蓬勃发展成为AI R&D的核心Apr 15, 2025 am 11:26 AM

埃隆大学(Elon University)想象的数字未来中心的最新报告对近300名全球技术专家进行了调查。由此产生的报告“ 2035年成为人类”,得出的结论是,大多数人担心AI系统加深的采用

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。