最近在使用python做接口测试,发现python中http请求方法有许多种,今天抽点时间把相关内容整理,分享给大家,具体内容如下所示:
一、python自带库----urllib2
python自带库urllib2使用的比较多,简单使用如下:
import urllib2 response = urllib2.urlopen('http://localhost:8080/jenkins/api/json?pretty=true') print response.read()
简单的get请求
import urllib2 import urllib post_data = urllib.urlencode({}) response = urllib2.urlopen('http://localhost:8080/, post_data) print response.read() print response.getheaders()
这就是最简单的urllib2发送post例子。代码比较多
二、python自带库--httplib
httplib是一个相对底层的http请求模块,urlib就是基于httplib封装的。简单使用如下:
import httplib conn = httplib.HTTPConnection("www.python.org") conn.request("GET", "/index.html") r1 = conn.getresponse() print r1.status, r1.reason data1 = r1.read() conn.request("GET", "/parrot.spam") r2 = conn.getresponse() data2 = r2.read() conn.close()
简单的get请求
我们再来看post请求
import httplib, urllib params = urllib.urlencode({'@number': 12524, '@type': 'issue', '@action': 'show'}) headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} conn = httplib.HTTPConnection("bugs.python.org") conn.request("POST", "", params, headers) response = conn.getresponse() data = response.read() print data conn.close()
是不是觉得太复杂了。每次写还得再翻文档,看看第三种吧
三、第三方库--requests
发请get请求超级简单:
print requests.get('http://localhost:8080).text
就一句话,再来看看post请求
payload = {'key1': 'value1', 'key2': 'value2'} r = requests.post("http://httpbin.org/post", data=payload) print r.text
也很简单。
再看看如果要认证:
url = 'http://localhost:8080' r = requests.post(url, data={}, auth=HTTPBasicAuth('admin', 'admin')) print r.status_code print r.headers print r.reason
是不是比urllib2更简单多了吧,且requests自带json解析。这点非常棒
python中的http请求
import urllib params = urllib.urlencode({key:value,key:value}) resultHtml = urllib.urlopen('[API or 网址]',params) result = resultHtml.read() print result

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python 提供多种从互联网下载文件的方法,可以使用 urllib 包或 requests 库通过 HTTP 进行下载。本教程将介绍如何使用这些库通过 Python 从 URL 下载文件。 requests 库 requests 是 Python 中最流行的库之一。它允许发送 HTTP/1.1 请求,无需手动将查询字符串添加到 URL 或对 POST 数据进行表单编码。 requests 库可以执行许多功能,包括: 添加表单数据 添加多部分文件 访问 Python 的响应数据 发出请求 首

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

自然语言处理(NLP)是人类语言的自动或半自动处理。 NLP与语言学密切相关,并与认知科学,心理学,生理学和数学的研究有联系。在计算机科学

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Atom编辑器mac版下载
最流行的的开源编辑器