作者 | Pengfei Zheng
#單位 | USTC, HKBU TMLR Group
#近年來,生成AI的迅猛發展為文字到圖像生成、視訊生成等令人矚目的領域注入了強大的動力。這些技術的核心在於擴散模型的應用。擴散模型首先透過定義一個不斷加噪聲的前向過程來將圖片逐步變為高斯噪聲,然後通過逆向過程將高斯噪聲逐步去噪,變為清晰圖片以得到真實樣本。其中擴散常微分模型被用於生成的圖片的插值數值,這在生成影片以及一些廣告創意上有著極大的應用潛力。然而,我們注意到,當這種方法應用於自然圖片時,插值的圖片效果往往很難如人意。
在一般情況下,擴散模型會對高斯雜訊進行取樣,然後逐步去噪以產生高品質的圖片。插值圖片的低品質意味著其潛在的變數不再遵循我們所期望的高斯分佈。為了提高插值圖片的質量,我們需要確保潛在的變數更接近從高斯分佈中取樣。直接對潛在的變數進行縮放和偏移會嚴重破壞生成的圖片,並且為了保留原始圖片的訊息,我們不能過度修改潛在的變數。因此,在盡可能不破壞潛在的變數下提高插值圖片的品質成為一個難題。
我們首先改變潛在變數的雜訊水平來分析什麼樣的潛在變數能夠被擴散模型還原成高質量的圖片,並結合SDEdit方法引入高斯雜訊來提高插值圖片的質量,而高斯雜訊的引入會帶來額外的資訊。此外我們也分析了高維空間中潛在的正交性,這為我們方法奠定了基礎。我們結合球面線性插值法和直接引入雜訊的方法,提出了一個全新的插值方法:對潛在的極值進行約束,並結合微小的高斯雜訊使其更接近預期的分佈,並引入了原始圖片來緩解資訊遺失的問題。利用這種插值方法,我們能夠在保留原圖資訊的同時,顯著提高自然圖片的插值結果。
接下來,我將簡單向大家分享我們的研究結果。
論文標題:NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation
論文連結:https:/ /www.php.cn/link/68310dc294a1c38c7ba636380151daca
#代碼連結:https://www.php.cn/link/fc9e5c39356354ahttps://www.php.cn/link/fc9e5c39356354a60d915949
##Introduction##圖3:不同雜訊等級的高斯雜訊去噪的效果
我們首先研究雜訊等級對產生圖片的影響。觀察到只有當高斯雜訊的水平與去雜訊的水平匹配時(中間的圖片),才能得到品質較高的圖片。如果雜訊水準低於去雜訊水準(右圖),或高於去雜訊水準(左圖),都會降低產生圖片的品質。我們使用定理一來解釋這個現象:
定理一阐述了在高维空间中,标准高斯噪声的分布特性:它们主要集中在一个超球面上。在这个超球面的内侧,尽管点的概率密度相对较高,但由于其占据的体积较小,其整体贡献并不显著;而在超球面的外侧,虽然点的体积较大,但由于概率密度随着距离的增大而迅速衰减,因此外侧点的贡献同样可以忽略不计。因此,在训练扩散模型时,我们主要观察到的潜在变量集中在超球面上,而超球面内侧和外侧的潜在变量由于这些原因难以有效进行去噪。
图4:自然图片插值失败的原因
自然图片通常具有扩散模型在训练过程中未曾见过的复杂特征,这使得扩散模型在尝试将自然图片转换为标准高斯噪声时遇到困难。具体而言,这些图片的潜在变量可能包含高于或低于模型去噪能力范围的高斯噪声。然而,扩散模型的能力主要局限于还原定理一中所描述的超球面上的高斯噪声。对于超出这一范围的噪声,模型往往无法有效处理。因此,在进行图片插值时,通常会产生质量较低的插值图片。
Introducing noise
图5:直接引入噪声插值
为了改善图片的质量,使潜在变量更接近超球面,我们采用了结合 SDEdit[3] 的方法。具体而言,我们直接向图片添加标准高斯噪声,然后进行插值,最后进行去噪处理。通过图5可以清晰地看出,这种方法显著提升了插值图片的质量。然而,需要注意的是,如图中所示,这种处理方法同时也会引入一些额外的信息。
Method
图6:NoiseDiffusion的整体设计
为了提高图片质量并尽可能减少信息丢失,我们创新地结合了球面线性插值法与直接引入噪声的插值方法,提出了全新的NoiseDiffusion方法。如图6所示,NoiseDiffusion的整体设计既考虑了插值过程中的信息保留,又通过引入噪声提升了图片质量,实现了两者之间的有效平衡。接下来,我们将详细阐述NoiseDiffusion的设计思路。
Design 1:
图7:对潜在变量的极值进行约束
根据统计学的,超出一定范围的噪声分量可以被视为异常值。且结合图3,我们发现高于去噪水平的高斯噪声会产生明显的噪点,而这与自然图片的插值结果上的异常色块非常相近,因此我们有理由认为是潜在变量的极值导致了这些异常色块的产生。基于这些分析,我们对潜在变量的极值施加了约束,以控制这些异常噪声的影响。从图7可以看出,通过对潜在变量极值的约束,我们大幅提升了图片的质量。
Design 2:
图8:引入原图信息
在对潜在变量施加约束时,我们可能会不小心影响到一些正常的分量,从而导致信息的损失。为了弥补这一潜在的信息损失,我们引入了原图信息作为补充。如图8所示,引入原图信息后,插值图片的质量得到了明显的提升。这表明原图信息在弥补信息损失方面发挥了重要作用。通过结合潜在变量的约束和原图信息的补充,我们能够在保证图片质量的同时,减少信息损失,实现更为准确和自然的插值效果。
Design 3:
球面线性插值法是一种依赖于计算两个潜在变量之间角度的插值方法。然而,在实际应用中,我们观察到这些潜在变量之间往往呈现出近乎正交的状态。为了解释这一现象,我们引入了定理二作为理论支撑。
图9:引入不同大小的高斯噪声
图10:结合Design 1减少引入的高斯噪声的量
从图9可以看出,随着我们逐步增加引入的高斯噪声量,插值图片的质量得到了显著提升。然而,这一改进并非没有代价,因为随着噪声量的增加,引入的额外信息也在逐渐增多。在实际插值过程中,为了在满足质量要求的同时尽量减少额外信息的引入,我们结合了前面提到的策略来有效地降低所需引入的高斯噪声的量(图10),从而更好地保留原始图像的信息。
Experiment
图11:和球面线性插值法的比较
我们将所提出的方法与球面线性插值法的结果进行了比较(如图11所示)。从插值结果来看,我们的方法在显著提高插值图片质量的同时,几乎不丢失信息。这充分展示了我们方法在保持信息完整性和提升图像质量方面的优越性能。
我们还在Stable Diffusion[4]上做了实验,由于Stable Diffusion的高度非结构化的潜在空间,在处插值很难得到平滑的插值(图12)。因此我们考虑在更小的时间步上进行插值(),这可以更多的保留原图的特征以让插值结果更加平滑,但是却导致了图片质量的降低(图13)。为了解决这个问题,我们运用了我们的方法NoiseDiffusion来修正潜在变量(图14)。从实验结果可以看出,我们的方法在较少改变信息的情况下,显著提高了图片的质量。
图12:在时使用球面线性插值法
图13:在时使用球面线性插值法
图14:在时使用NoiseDiffusion插值
Reference
[1] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,2021.
[2] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,2021.
[3] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. In ICLR, 2022.
[4]Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. Highresolution image synthesis with latent diffusion models. In CVPR, 2022.
[5] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. Gan
inversion: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
课题组介绍
香港浸会大学可信机器学习和推理课题组 (TMLR Group) 由多名青年教授、博士后研究员、博士生、访问博士生和研究助理共同组成,课题组隶属于理学院计算机系。课题组专攻可信表征学习、基于因果推理的可信学习、可信基础模型等相关的算法,理论和系统设计以及在自然科学上的应用,具体研究方向和相关成果详见本组Github (https://github.com/tmlr-group)。课题组由政府科研基金以及工业界科研基金资助,如香港研究资助局杰出青年学者计划,国家自然科学基金面上项目和青年项目,以及微软、英伟达、百度、阿里、腾讯等企业的科研基金。青年教授和资深研究员手把手带,GPU计算资源充足,长期招收多名博士后研究员、博士生、研究助理和研究实习生。此外,本组也欢迎自费的访问博士后研究员、博士生和研究助理申请,访问至少3-6个月,支持远程访问。有兴趣的同学请发送个人简历和初步研究计划到邮箱 (bhanml@comp.hkbu.edu.hk)。
以上是ICLR 2024 Spotlight | NoiseDiffusion: 矯正擴散模型噪聲,提高插值圖片質量的詳細內容。更多資訊請關注PHP中文網其他相關文章!

動盪遊戲:與AI代理商的遊戲開發徹底改變 Roupheaval是一家遊戲開發工作室,由暴風雪和黑曜石等行業巨頭的退伍軍人組成,有望用其創新的AI驅動的Platfor革新遊戲創作

Uber的Robotaxi策略:自動駕駛汽車的騎車生態系統 在最近的Curbivore會議上,Uber的Richard Willder推出了他們成為Robotaxi提供商的乘車平台的策略。 利用他們在

事實證明,視頻遊戲是最先進的AI研究的寶貴測試理由,尤其是在自主代理商和現實世界機器人的開發中,甚至有可能促進人工通用情報(AGI)的追求。 一個

不斷發展的風險投資格局的影響在媒體,財務報告和日常對話中顯而易見。 但是,對投資者,初創企業和資金的具體後果經常被忽略。 風險資本3.0:範式

Adobe Max London 2025對Creative Cloud和Firefly進行了重大更新,反映了向可訪問性和生成AI的戰略轉變。 該分析結合了事件前簡報中的見解,並融合了Adobe Leadership。 (注意:Adob

Meta的Llamacon公告展示了一項綜合的AI策略,旨在直接與OpenAI等封閉的AI系統競爭,同時為其開源模型創建了新的收入流。 這個多方面的方法目標bo

人工智能領域對這一論斷存在嚴重分歧。一些人堅稱,是時候揭露“皇帝的新衣”了,而另一些人則強烈反對人工智能僅僅是普通技術的觀點。 讓我們來探討一下。 對這一創新性人工智能突破的分析,是我持續撰寫的福布斯專欄文章的一部分,該專欄涵蓋人工智能領域的最新進展,包括識別和解釋各種有影響力的人工智能複雜性(請點擊此處查看鏈接)。 人工智能作為普通技術 首先,需要一些基本知識來為這場重要的討論奠定基礎。 目前有大量的研究致力於進一步發展人工智能。總目標是實現人工通用智能(AGI)甚至可能實現人工超級智能(AS

公司AI模型的有效性現在是一個關鍵的性能指標。自AI BOOM以來,從編寫生日邀請到編寫軟件代碼的所有事物都將生成AI使用。 這導致了語言mod的擴散


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1
好用且免費的程式碼編輯器

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6
視覺化網頁開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。