搜尋
首頁科技週邊人工智慧理解GraphRAG(一):RAG的挑戰

RAG(Risk Assessment Grid)是一種透過外部知識來源增強現有大型語言模型(LLM)的方法,以提供和上下文更相關的答案。在RAG中,檢索組件獲取額外的信息,響應基於特定來源,然後將這些信息輸入到LLM提示中,以使LLM的響應基於這些信息(增強階段)。與其他技術(例如微調)相比,RAG更經濟。它也有減少幻覺的優勢,透過基於這些資訊(增強階段)提供額外的脈絡──你RAG成為今天LLM任務的(如推薦、文字擷取、情緒分析等)的流程方法。

理解GraphRAG(一):RAG的挑戰

如果我們進一步分解這個想法,根據使用者意圖,我們通常會查詢一個向量資料庫。向量資料庫使用連續的向量空間來捕捉兩個概念之間的關係,使用基於接近度的搜尋。

向量資料庫概述

在向量空間中,無論是文字、圖像、音訊或任何其他類型的信息,都被轉換為向量。向量是資料在高維空間的數值表示。每個維度對應資料的一個特徵,每個維度中的值反映了該特徵的強度或存在。 透過向量表示,我們可以對資料進行數學運算、距離計算和相似度比較等操作。不同維度對應的值反映了該特徵的強度或存在與否。 以文字資料為例,可以將每個文件表示為向量,其中每個維度表示一個單字在文件中的出現頻率。這樣,兩個文件可以透過計算它們的向量之間的距離來

在資料庫中進行基於接近度的搜索,涉及並使用另一個向量查詢這些資料庫,並蒐索在向量空間中「接近」它的向量。向量之間的接近度通常由距離測量來決定,例如歐幾里德距離、餘弦相似度或曼哈頓距離。向量之間的接近度通常由距離測量來決定,例如歐幾里德距離、餘弦相似度或曼哈頓距離。

當您在向資料庫中執行搜尋時,您提供了一個系統將其轉換為向量的查詢。然後資料庫計算該查詢向量與資料庫中已儲存的向量之間的距離或相似性。接近查詢向量的向量(根據所選量測量)被認為是最相關的結果。這些最接近查詢向量的向量(根據所選度量)被認為是最相關的結果。

基於接近度的搜尋在向量資料庫中特別強大,適用於推薦系統、資訊檢索和異常檢測等任務。

這種方法使系統能夠更直觀地運行,並透過理解資料中的上下文和深層意義,更有效地回應使用者查詢,而不僅僅依賴於表面匹配。

然而,在應用程式連接到資料庫進行進階搜尋方面存在一些限制,例如資料品質、處理動態知識的能力以及透明度。

RAG的限制

根據文檔的大小,RAG大致分為三類:如果文檔很小,可以上下文存取;如果文檔很大(或有多個文件),在查詢時產生較小的區塊,這些區塊被索引並用於回應查詢。

儘管取得了成功,RAG也有一些缺點。

衡量RAG表現的兩個主要指標是困惑度和幻覺,困惑度代表在文本生成過程中同等可能的下一個詞的選擇數量。即語言模型在其選擇上的「困惑」程度。幻覺是AI做出的不真實或想像的陳述。

雖然RAG有助於減少幻覺,但它並沒有消除它。如果您有一個小而簡潔的文檔,您可以減少困惑度(因為LLM的選擇很少),並減少幻覺(如果您只詢問文檔中的內容)。當然,另一方面是,一個單一的小文檔會導致一個微不足道的應用。對於更複雜的應用,您需要一種提供更多上下文的方法。

例如,考慮單字「​​bark」-我們至少有兩個不同的上下文:

樹的上下文:「橡樹粗糙的樹皮保護它免受寒冷。 ##提供更多上下文的一種方法是將RAG與知識圖譜結合(一個GRAPHRAG)。

在知識圖譜中,這些單字將與它們相關的上下文和意義連接起來。例如,「bark」將與代表「樹」和「狗」的節點連接。其他連接可以指示常見動作(例如,樹的「保護」、狗的「製造噪音」)或屬性(例如,樹的「粗糙」、狗的「響亮」)。這種結構化資訊允許語言模型根據句子中的其他單字或對話的整體主題選擇適當的意義。

在接下來的部分中,我們將看到RAG的限制以及GRAPHRAG如何解決這些限制。

原文標題:Understanding GraphRAG – 1: The challenges of RAG

##原文作者:ajitjaokar

以上是理解GraphRAG(一):RAG的挑戰的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
本地使用Groq Llama 3 70B的逐步指南本地使用Groq Llama 3 70B的逐步指南Jun 10, 2024 am 09:16 AM

译者|布加迪审校|重楼本文介绍了如何使用GroqLPU推理引擎在JanAI和VSCode中生成超快速响应。每个人都致力于构建更好的大语言模型(LLM),例如Groq专注于AI的基础设施方面。这些大模型的快速响应是确保这些大模型更快捷地响应的关键。本教程将介绍GroqLPU解析引擎以及如何在笔记本电脑上使用API和JanAI本地访问它。本文还将把它整合到VSCode中,以帮助我们生成代码、重构代码、输入文档并生成测试单元。本文将免费创建我们自己的人工智能编程助手。GroqLPU推理引擎简介Groq

加州理工华人用AI颠覆数学证明!提速5倍震惊陶哲轩,80%数学步骤全自动化加州理工华人用AI颠覆数学证明!提速5倍震惊陶哲轩,80%数学步骤全自动化Apr 23, 2024 pm 03:01 PM

LeanCopilot,让陶哲轩等众多数学家赞不绝口的这个形式化数学工具,又有超强进化了?就在刚刚,加州理工教授AnimaAnandkumar宣布,团队发布了LeanCopilot论文的扩展版本,并且更新了代码库。图片论文地址:https://arxiv.org/pdf/2404.12534.pdf最新实验表明,这个Copilot工具,可以自动化80%以上的数学证明步骤了!这个纪录,比以前的基线aesop还要好2.3倍。并且,和以前一样,它在MIT许可下是开源的。图片他是一位华人小哥宋沛洋,他是

从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?Jun 05, 2023 pm 12:30 PM

图片来源@视觉中国文|王吉伟从“人+RPA”到“人+生成式AI+RPA”,LLM如何影响RPA人机交互?换个角度,从人机交互看LLM如何影响RPA?影响程序开发与流程自动化人机交互的RPA,现在也要被LLM改变了?LLM如何影响人机交互?生成式AI怎么改变RPA人机交互?一文看明白:大模型时代来临,基于LLM的生成式AI正在快速变革RPA人机交互;生成式AI重新定义人机交互,LLM正在影响RPA软件架构变迁。如果问RPA对程序开发以及自动化有哪些贡献,其中一个答案便是它改变了人机交互(HCI,h

使用Rag和Sem-Rag提供上下文增强AI编码助手使用Rag和Sem-Rag提供上下文增强AI编码助手Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

Plaud launches NotePin AI wearable recorder for $169Plaud launches NotePin AI wearable recorder for $169Aug 29, 2024 pm 02:37 PM

Plaud, the company behind the Plaud Note AI Voice Recorder (available on Amazon for $159), has announced a new product. Dubbed the NotePin, the device is described as an AI memory capsule, and like the Humane AI Pin, this is wearable. The NotePin is

七个很酷的GenAI & LLM技术性面试问题七个很酷的GenAI & LLM技术性面试问题Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

知识图谱检索增强的GraphRAG(基于Neo4j代码实现)知识图谱检索增强的GraphRAG(基于Neo4j代码实现)Jun 12, 2024 am 10:32 AM

图检索增强生成(GraphRAG)正逐渐流行起来,成为传统向量搜索方法的有力补充。这种方法利用图数据库的结构化特性,将数据以节点和关系的形式组织起来,从而增强检索信息的深度和上下文关联性。图在表示和存储多样化且相互关联的信息方面具有天然优势,能够轻松捕捉不同数据类型间的复杂关系和属性。而向量数据库则处理这类结构化信息时则显得力不从心,它们更专注于处理高维向量表示的非结构化数据。在RAG应用中,结合结构化化的图数据和非结构化的文本向量搜索,可以让我们同时享受两者的优势,这也是本文将要探讨的内容。构

可视化FAISS矢量空间并调整RAG参数提高结果精度可视化FAISS矢量空间并调整RAG参数提高结果精度Mar 01, 2024 pm 09:16 PM

随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。一种处理这一挑战的可行技术是检索增强生成(RAG)。它涉及通过引用训练数据源之外的权威知识库来增强响应的过程,以提升生成的质量和准确性。RAG系统包括一个检索系统,用于从语料库中检索相关文档片段

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
倉庫:如何復興隊友
4 週前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒險:如何獲得巨型種子
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具