首頁 >科技週邊 >人工智慧 >聊聊機器學習與人力資源管理碰撞什麼火花?

聊聊機器學習與人力資源管理碰撞什麼火花?

PHPz
PHPz轉載
2024-04-26 10:25:07628瀏覽

前  言

近年來,機器學習領域取得了許多重大突破,人工智慧技術驅動的人力資源管理服務產品也擁有一個龐大且充滿活力的市場。越來越多的企業和政府機構逐漸進行思考將機器學習技術應用於人力資源管理,透過神經網路做出有效的決策,準確地預測人力資源管理的結果。

本文介紹了將機器學習用於人力資源管理研究的四個方面,主要包括技術困難、人力資源管理決策系統簡介、系統設計方法和系統安全性,期望讀者可以初步了解相關研究。

技術困難

2019年,美國20家大公司的執行長進行了相關的研討會,結果表明,機器學習技術應用在人力資源管理領域面臨著獨特的挑戰。發展有價值的人力資源管理決策系統不僅有技術的挑戰,還需要向量人力資源管理結果的固有複雜性方面的障礙,以及難以解決的數據、道德、法律約束和對受影響員工或其他利益相關者認為有爭議的選擇程序。人力資源管理的決策需要避免容易挑戰法律的選擇程序,或員工或其他利害關係人認為有爭議的選擇程序。

總結有以下幾個方面:

  • 如何建立和監督一系列研究和開發項目,探索機器學習在人力資源管理中的應用;
  • #如何有效地開發基於NLP的決策支援系統;
  • 如何測試決策支援系統以確認它們在決策中使用是安全的;
  • #一旦系統被開發和測試,如何成功地將系統轉換為可接受的使用方式。

人力資源管理決策系統簡介

人力資源管理決策系統的實現面臨以下挑戰:

  • 系統應該自動化決策,為人類決策者提供輸入,還是以其他方式與決策過程互動?
  • 人類決策者需要什麼樣的輸入,候選機器學習系統在提供這些輸入方面有多有效?
  • 考慮到目前不同候選系統可用的功能級別,不同類型的決策支援的風險是什麼?

這個框架展示了一個用於概念化設計和人力資源管理的機器學習系統的原則。框架背後的理念是,系統設計與系統的最高優先目標是不可分割的。人力資源管理目標可協助設計者從機器學習支援人力資源管理決策過程的許多可能方式中進行選擇。實現的設計反過來又影響系統的評估方式。例如,自動化決策的系統可以根據其準確性或其他重要標準進行評估,並提供輸入的系統必須根據輸入的準確性以及它們如何影響整體決策結果進行判斷。如果系統無法滿足安全標準,則必須修改實施設計,直到設計人員能夠獲得一個對人力資源管理目標有價值的系統,並且能夠滿足安全參數。

聊聊機器學習與人力資源管理碰撞什麼火花?圖機器學習系統框架

系統設計方法

在開發的早期,有許多設計選項可將基於機器學習的輸入整合到決策中。設計在時間(例如,在人類決策之前還是之後)和影響程度(例如,建議一個選項還是將注意力引導到重要功能上)方面有所不同。這裡將重點介紹機器學習決策系統的五個主要設計實現:

在決定時,機器學習系統對人力資源管理記錄進行評分,並在沒有人類決策者參與的情況下自動做出決策。

2. 推薦。機器學習系統提供人類決策者建議,作為額外的輸入。

3. 得分。機器學習系統將分數作為額外的輸入提供給人類。

4. 總結。機器學習系統自動為人類決策者總結。

5. 審計。機器學習系統標記不正常的情況,供人類決策者審查,作為審計過程的一部分。

設計過程從確定機器學習系統的優先目標開始,不同的目標組合需要不同的設計實現,如表所示。

聊聊機器學習與人力資源管理碰撞什麼火花?圖片

這些目標也指出了評估過程的有效性的潛在測量。例如,如果目標是減少工作量,系統應該減少人類決策者的數量或他們花費在記錄評分上的時間;如果目標是改善人類的決策,系統應該有助於提高決策的質量,透過證據來衡量決策更好地促進重要的人力資源管理結果。

自動總結敘事記錄的機器學習系統可以作為決策支援的模式。一個人的大部分人力資源記錄分為兩種自由格式的文字和人員屬性。自由格式的文本,如任務清單、職責描述和主要成就總結。人員屬性是預先量化的、可解釋的、對管理有用的數據,例如經驗年資、功績順序或晉升測驗分數。雖然後一種類型的信息更容易在模型或視覺化中處理和使用,但前一種類型的信息也是做出充分知情的人力資源管理決策所需要的。

管理階層處理決策需要對記錄進行深思熟慮的審查,並由經驗豐富的人員執行手動審查或評分過程。在為支持手工評審而考慮的各種設計實現中,「總結」是最通用的。這是唯一與所有人力資源管理目標適度或高度一致的設計。自動總結對於提供回饋、增加透明度和提高人工決策的準確性非常有用,而且它們至少對於標準化、減少人工工作量有一定的用處。同時,總結實現保持了對決策過程的高度人工控制,因此它比其他設計更有可能滿足安全標準。事實上,總結突顯了系統認為重要的文本元素,因此,它是對系統決策的一種解釋。因此,總結可以作為一個有用的輔助工具,幫助管理人員理解其他設計實作中的模型輸出。

系統安全性

人力資源管理決策影響企業未來的有生力量。因此,在對決策過程進行重大更改時必須採用「首先不傷害」的原則。隨著對機器學習的投資增加,大量的研究和政策文件旨在為負責任的和合乎道德的使用機器學習(以及更廣泛的人工智慧)提供規範性指導。

例如,保護成員隱私的現行規則和框架將繼續適用於任何開發專案。在開發和部署期間,有三個原則與測試系統特別相關,測試系統要求機器學習系統準確、公平和可解釋:

準確性意味著機器學習系統或它包含的模型以高機率正確地預測感興趣的結果。

公平性意味著機器學習系統平等地對待子群組。

可解釋性意味著人類可以理解導致機器學習系統結果的因素和關係。

這些安全標準有時會相互衝突。為了增加公平性,設計師可能會對系統施加限制,降低其準確性或可解釋性。為了增加可解釋性,系統設計者可能會使用更多可解釋性(但靈活性較差)的建模方法,這可能會影響準確性和公平性。測試必須包括平衡準確性、公平性和可解釋性,以達到滿足人力資源管理目標以及法律和道德約束的設計。

關於公平,重要的是要注意公平沒有單一的定義,而且往往不可能滿足競爭類型的公平。因此,機構必須選擇一個定義來推進測試。這裡區分了程序公平性和結果公平性,前者確保人力資源管理過程或演算法對不同子組的成員一視同仁,後者檢視模型或過程結果是否有偏見。

最後,可解釋性對於實現人力資源管理目標至關重要,因為如果人們不了解系統如何有助於更好的決策,他們可能會忽略或濫用系統。此外,定義可解釋性與目標受眾是分不開的,因為不同類型的使用者需要不同層次的解釋。設計人員可以考慮使用本質上可解釋的模型來增加可解釋性,並且他們還可以進行人在循環測試,以評估人們對系統功能的理解程度。

小  結

本文主要從技術困難、人力資源管理決策系統簡介、系統設計方法和系統安全性四個面向簡要介紹機器學習用於人力資源管理領域的研究。期望可以對想要初步了解此研究的讀者有所幫助。

參考文獻:《Leveraging Machine Learning to Improve Human Resource Management》

以上是聊聊機器學習與人力資源管理碰撞什麼火花?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:51cto.com。如有侵權,請聯絡admin@php.cn刪除