搜尋
首頁科技週邊人工智慧深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

寫在前面&個人理解

多視圖深度估計在各種基準測試中都取得了較高性能。然而,目前幾乎所有的多視圖系統都依賴給定的理想相機姿態,而這在許多現實世界的場景中是不可用的,例如自動駕駛。本工作提出了一種新的穩健性基準來評估各種噪音姿態設定下的深度估計系統。令人驚訝的是,發現當前的多視圖深度估計方法或單視圖和多視圖融合方法在給定有雜訊的姿態設定時會失敗。為了應對這一挑戰,這裡提出了一種單視圖和多視圖融合的深度估計系統AFNet,該系統自適應地整合了高置信度的多視圖和單視圖結果,以實現穩健和準確的深度估計。自適應融合模組透過基於包裹置信度圖在兩個分支之間動態選擇高置信度區域來執行融合。因此,當面對無紋理場景、不準確的校準、動態物件和其他退化或具有挑戰性的條件時,系統傾向於選擇更可靠的分支。在穩健性測試下,方法優於最先進的多視圖和融合方法。此外,在具有挑戰性的基準測試中實現了最先進的性能 (KITTI和DDAD)。

論文連結:https://arxiv.org/pdf/2403.07535.pdf

論文名稱:Adaptive Fusion of Single-View and Multi-View Depth for Autonomous Driving

領域背景

影像深度估計一直是電腦視覺領域的挑戰,具有廣泛的應用。對於基於視覺的自動駕駛系統,深度感知是關鍵,它有助於理解道路上的物體並建立3D環境地圖。隨著深度神經網路在各種視覺問題中的應用,基於卷積神經網路(CNN)的方法已成為深度估計任務的主流。

根據輸入格式,主要分為多視角深度估計和單視角深度估計。多視圖方法估計深度的假設是,給定正確的深度、相機標定和相機姿態,各個視圖的像素應該相似。他們依靠極線幾何來三角測量高品質的深度。然而,多視圖方法的準確性和穩健性在很大程度上取決於相機的幾何配置和視圖之間的對應匹配。首先,攝影機需要進行足夠的平移以進行三角測量。在自動駕駛場景中,自車可能會在紅綠燈處停車或在不向前移動的情況下轉彎,這會導致三角測量失敗。此外,多視圖方法存在動態目標和無紋理區域的問題,這些問題在自動駕駛場景中普遍存在。另一個問題是運動車輛上的SLAM姿態優化。在現有的SLAM方法中,噪音是不可避免的,更不用說具有挑戰性和不可避免的情況了。例如,一個機器人或自動駕駛汽車可以在不重新校準的情況下部署數年,從而導致姿勢嘈雜。相較之下,由於單一視圖方法依賴對場景的語義理解和透視投影線索,因此它們對無紋理區域、動態物件更具穩健性,而不依賴相機姿勢。然而,由於尺度的模糊性,其效能與多視圖方法相比仍有很大差距。在這裡,我們傾向於考慮是否可以很好地結合這兩種方法的優勢,在自動駕駛場景中進行穩健和準確的單目視訊深度估計。

AFNet網路結構

AFNet結構如下所示,它由三個部分組成:單一視圖分支、多視圖分支和自適應融合(AF)模組。兩個分支共享特徵提取網絡,並具有自己的預測和置信度圖,即、,和,然後由AF模組進行融合,以獲得最終準確和穩健的預測,AF模組中的綠色背景表示單視圖分支和多重視圖分支的輸出。

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

損失函數:

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

#單一視圖與多視圖深度模組

#為了合併主幹特徵並獲得深度特徵Ds,AFNet建構了一個多尺度解碼器。在這個過程中,對Ds的前256個通道進行softmax操作,得到深度機率體積Ps。而深度特徵中的最後一個通道則被用作單視圖深度的置信圖Ms。最後,透過軟加權的方式來計算單視圖深度。

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

多重視圖分支

多重視圖分支與單一視圖分支共用主幹,以擷取參考影像和來源影像的特徵。我們採用去卷積將低分辨率特徵去卷積為四分之一分辨率,並將它們與用於構建cost volume的初始四分之一特徵相結合。透過將來源特徵wrap到參考相機跟隨的假設平面中,形成特徵volume。用於不需要太多的魯棒匹配信息,在計算中保留了特徵的通道維度並構建了4D cost volume,然後通過兩個3D卷積層將通道數量減少到1。

深度假設的取樣方法與單視圖分支一致,但取樣數量僅為128,然後使用堆疊的2D沙漏網路進行正規化,以獲得最終的多視圖cost volume。為了補充單視圖特徵的豐富語義資訊和由於成本正則化而丟失的細節,使用殘差結構來組合單視圖深度特徵Ds和cost volume,以獲得融合深度特徵,如下所示:

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

自適應融合模組

為了獲得最終準確和穩健的預測,設計了AF模組,以自適應地選擇兩個分支之間最準確的深度作為最終輸出,如圖2所示。透過三個confidence進行融合映射,其中兩個是由兩個分支分別產生的置信圖Ms和Mm,最關鍵的一個是透過前向wrapping產生的置信度圖Mw,以判斷多視圖分支的預測是否可靠。

實驗結果

DDAD(自動駕駛的密集深度)是一種新的自動駕駛基準,用於在具有挑戰性和多樣化的城市條件下進行密集深度估計。它由6台同步相機拍攝,並包含高密度雷射雷達產生的準確的地GT深度(整個360度視場)。它在單一相機視圖中有12650個訓練樣本和3950個驗證樣本,其中解析度為1936×1216。來自6台攝影機的全部資料用於訓練和測試。 KITTI資料集,提供運動車輛上拍攝的戶外場景的立體影像和相應的3D雷射scan,解析度約為1241×376。

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

DDAD和KITTI上的評測結果比較。請注意,* 標記了使用其開源程式碼複製的結果,其他報告的數字來自相應的原始論文。

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

DDAD上方法中每種策略的消融實驗結果。 Single表示單一視圖分支預測的結果,Multi-表示多視圖分支預測結果,Fuse表示融合結果dfuse。

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

消融結果的特徵提取網路參數共享和提取匹配資訊的方法。

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

深度估計SOTA!自動駕駛單眼與環視深度的自適應融合

#

以上是深度估計SOTA!自動駕駛單眼與環視深度的自適應融合的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
10個生成AI編碼擴展,在VS代碼中,您必須探索10個生成AI編碼擴展,在VS代碼中,您必須探索Apr 13, 2025 am 01:14 AM

嘿,編碼忍者!您當天計劃哪些與編碼有關的任務?在您進一步研究此博客之前,我希望您考慮所有與編碼相關的困境,這是將其列出的。 完畢? - 讓&#8217

烹飪創新:人工智能如何改變食品服務烹飪創新:人工智能如何改變食品服務Apr 12, 2025 pm 12:09 PM

AI增強食物準備 在新生的使用中,AI系統越來越多地用於食品製備中。 AI驅動的機器人在廚房中用於自動化食物準備任務,例如翻轉漢堡,製作披薩或組裝SA

Python名稱空間和可變範圍的綜合指南Python名稱空間和可變範圍的綜合指南Apr 12, 2025 pm 12:00 PM

介紹 了解Python函數中變量的名稱空間,範圍和行為對於有效編寫和避免運行時錯誤或異常至關重要。在本文中,我們將研究各種ASP

視覺語言模型(VLMS)的綜合指南視覺語言模型(VLMS)的綜合指南Apr 12, 2025 am 11:58 AM

介紹 想像一下,穿過​​美術館,周圍是生動的繪畫和雕塑。現在,如果您可以向每一部分提出一個問題並獲得有意義的答案,該怎麼辦?您可能會問:“您在講什麼故事?

聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容Apr 12, 2025 am 11:52 AM

繼續使用產品節奏,本月,Mediatek發表了一系列公告,包括新的Kompanio Ultra和Dimenty 9400。這些產品填補了Mediatek業務中更傳統的部分,其中包括智能手機的芯片

本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢Apr 12, 2025 am 11:51 AM

#1 Google推出了Agent2Agent 故事:現在是星期一早上。作為AI驅動的招聘人員,您更聰明,而不是更努力。您在手機上登錄公司的儀表板。它告訴您三個關鍵角色已被採購,審查和計劃的FO

生成的AI遇到心理摩托車生成的AI遇到心理摩托車Apr 12, 2025 am 11:50 AM

我猜你一定是。 我們似乎都知道,心理障礙由各種chat不休,這些chat不休,這些chat不休,混合了各種心理術語,並且常常是難以理解的或完全荒謬的。您需要做的一切才能噴出fo

原型:科學家將紙變成塑料原型:科學家將紙變成塑料Apr 12, 2025 am 11:49 AM

根據本週發表的一項新研究,只有在2022年製造的塑料中,只有9.5%的塑料是由回收材料製成的。同時,塑料在垃圾填埋場和生態系統中繼續堆積。 但是有幫助。一支恩金團隊

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境