擴散模型,迎來了一個重大新應用程式-
像Sora生成影片一樣,給神經網路產生參數,直接打入了AI的底層!
這是新加坡國立大學尤洋教授團隊聯合UCB、Meta AI實驗室等機構最新開源的研究成果。
具體來說,研究團隊提出了一種用於產生神經網路參數的擴散模型p(arameter)-diff。
用它來產生網路參數,速度比直接訓練最多提高44倍,而且表現毫不遜色。
該模型一經發布後,在AI社區迅速引起了激烈的討論,圈內專家對其表現出了與普通人看到Sora時一樣的驚嘆態度。
甚至有人直接驚呼,這基本上相當於AI在創造新的AI了。
就連AI巨頭LeCun看了之後,也點讚了這一成果,表示這真的是個cute idea。
而實質上,p-diff也確實具有和Sora一樣重大的意義,對此同實驗室的Fuzhao Xue(薛復昭)博士進行了詳細解釋:
Sora產生高維度數據,即視頻,這使得Sora成為世界模擬器(從一個維度接近AGI)。
而這項工作,神經網路擴散,可以產生模型中的參數,具有成為元世界級學習器/優化器的潛力,從另一個新的重要維度向AGI邁進。
言歸正傳,p-diff到底是如何產生神經網路參數的呢?
將自編碼器與擴散模型結合
要弄清楚這個問題,首先要了解擴散模型和神經網路各自的工作特性。
擴散生成過程,是從隨機分佈到高度特定分佈的轉變,透過複合雜訊添加,將視覺資訊降級為簡單雜訊分佈。
而神經網路訓練,同樣遵循這樣的轉變過程,也同樣可以透過添加雜訊的方式來降級,研究人員正是在這一特點的啟發之下提出p-diff方法的。
從結構上看,p-diff是研究團隊在標準潛擴散模型的基礎之上,結合自編碼器設計的。
研究者首先從訓練完成、表現較好的網路參數中選取一部分,並展開為一維向量形式。
然後用自編碼器從一維向量中提取潛在表示,作為擴散模型的訓練數據,這樣做可以捕捉到原有參數的關鍵特徵。
訓練過程中,研究人員讓p-diff透過正向和反向過程來學習參數的分佈,完成後,擴散模型像產生視覺訊息的過程一樣,從隨機噪音中合成這些潛在表示。
最後,新產生的潛在表示再被與編碼器對應的解碼器還原成網路參數,並用於建構新模型。
下圖是透過p-diff、使用3個隨機種子從頭開始訓練的ResNet-18模型的參數分佈,展示了不同層之間以及同一層不同參數之間的分佈模式。
為了評估p-diff所產生參數的質量,研究人員利用3種類型、每種兩個規模的神經網絡,在8個資料集上對其進行了測試。
下表中,每組的三個數字依序表示原始模型、整合模型和p-diff產生的模型的評估成績。
結果可以看到,用p-diff產生的模型表現基本上都接近甚至超過了人工訓練的原始模型。
效率上,在不损失准确度的情况下,p-diff生成ResNet-18网络的速度是传统训练的15倍,生成Vit-Base的速度更是达到了44倍。
额外的测试结果证明,p-diff生成的模型与训练数据有显著差异。
从下图(a)可以看到,p-diff生成的模型之间的相似度低于各原始模型之间的相似度,以及p-diff与原始模型的相似度。
而从(b)和(c)中可知,与微调、噪声添加方式相比,p-diff的相似度同样更低。
这些结果说明,p-diff是真正生成了新的模型,而非仅仅记忆训练样本,同时也表明其具有良好的泛化能力,能够生成与训练数据不同的新模型。
目前,p-diff的代码已经开源,感兴趣的话可以到GitHub中查看。
论文地址:https://arxiv.org/abs/2402.13144
GitHub:https://github.com/NUS-HPC-AI-Lab/Neural-Network-Diffusion
以上是打入AI底層! NUS尤洋團隊以擴散模型建構神經網路參數,LeCun按讚的詳細內容。更多資訊請關注PHP中文網其他相關文章!

在約翰·羅爾斯1971年具有開創性的著作《正義論》中,他提出了一種思想實驗,我們應該將其作為當今人工智能設計和使用決策的核心:無知的面紗。這一理念為理解公平提供了一個簡單的工具,也為領導者如何利用這種理解來公平地設計和實施人工智能提供了一個藍圖。 設想一下,您正在為一個新的社會制定規則。但有一個前提:您事先不知道自己在這個社會中將扮演什麼角色。您最終可能富有或貧窮,健康或殘疾,屬於多數派或邊緣少數群體。在這種“無知的面紗”下運作,可以防止規則制定者做出有利於自身的決策。相反,人們會更有動力製定公

許多公司專門從事機器人流程自動化(RPA),提供機器人以使重複的任務自動化 - UIPATH,在任何地方自動化,藍色棱鏡等。 同時,過程採礦,編排和智能文檔處理專業

AI的未來超越了簡單的單詞預測和對話模擬。 AI代理人正在出現,能夠獨立行動和任務完成。 這種轉變已經在諸如Anthropic的Claude之類的工具中很明顯。 AI代理:研究

快速的技術進步需要對工作未來的前瞻性觀點。 當AI超越生產力並開始塑造我們的社會結構時,會發生什麼? Topher McDougal即將出版的書Gaia Wakes:

產品分類通常涉及復雜的代碼,例如諸如統一系統(HS)等系統的“ HS 8471.30”,對於國際貿易和國內銷售至關重要。 這些代碼確保正確的稅收申請,影響每個INV

數據中心能源消耗與氣候科技投資的未來 本文探討了人工智能驅動的數據中心能源消耗激增及其對氣候變化的影響,並分析了應對這一挑戰的創新解決方案和政策建議。 能源需求的挑戰: 大型超大規模數據中心耗電量巨大,堪比數十萬個普通北美家庭的總和,而新興的AI超大規模中心耗電量更是數十倍於此。 2024年前八個月,微軟、Meta、谷歌和亞馬遜在AI數據中心建設和運營方面的投資已達約1250億美元(摩根大通,2024)(表1)。 不斷增長的能源需求既是挑戰也是機遇。據Canary Media報導,迫在眉睫的電

生成式AI正在徹底改變影視製作。 Luma的Ray 2模型,以及Runway的Gen-4、OpenAI的Sora、Google的Veo等眾多新模型,正在以前所未有的速度提升生成視頻的質量。這些模型能夠輕鬆製作出複雜的特效和逼真的場景,甚至連短視頻剪輯和具有攝像機感知的運動效果也已實現。雖然這些工具的操控性和一致性仍有待提高,但其進步速度令人驚嘆。 生成式視頻正在成為一種獨立的媒介形式。一些模型擅長動畫製作,另一些則擅長真人影像。值得注意的是,Adobe的Firefly和Moonvalley的Ma

ChatGPT用户体验下降:是模型退化还是用户期望? 近期,大量ChatGPT付费用户抱怨其性能下降,引发广泛关注。 用户报告称模型响应速度变慢,答案更简短、缺乏帮助,甚至出现更多幻觉。一些用户在社交媒体上表达了不满,指出ChatGPT变得“过于讨好”,倾向于验证用户观点而非提供批判性反馈。 这不仅影响用户体验,也给企业客户带来实际损失,例如生产力下降和计算资源浪费。 性能下降的证据 许多用户报告了ChatGPT性能的显著退化,尤其是在GPT-4(即将于本月底停止服务)等旧版模型中。 这


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

SublimeText3漢化版
中文版,非常好用

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具