搜尋
首頁科技週邊人工智慧決策,決策……實用應用AI的下一步

Decisions, Decisions… Next Steps For Practical Applied AI

Numerous companies specialize in robotic process automation (RPA), offering bots to automate repetitive tasks—UiPath, Automation Anywhere, Blue Prism, and others. Meanwhile, process mining, orchestration, and intelligent document processing specialists like Celonis, IBM, Abbyy, and Aris occupy a different niche. Then there are AI-driven supply chain planning and forecasting experts, including ERP giants SAP and Oracle, alongside Blue Yonder and Coupa. A separate category exists for digital twin specialists utilizing IoT AI toolsets, such as o9 Solutions, Bentley Systems, Siemens, and General Electric. Finally, we have general-purpose AI providers like IBM Watsonx, OpenAI, Anthropic, Microsoft, and Google.

The next frontier for many of these vendors is the direct application of AI within business processes. Demonstrating AI's practical, quantifiable impact on business decisions is crucial, as AI alone remains a passive resource.

Prioritizing Simplicity

While discussions around autonomous AI decision-making are prevalent, the field remains somewhat nebulous. Clear-cut decision management tools for supply chain, finance, and operations could prove highly beneficial.

This context helps explain Aera Technology's focus on "decision intelligence"—software designed to recommend actions within business processes. Aera Decision Cloud predicts supply shortages, suggests shipment rerouting, and automates inventory replenishment without human intervention.

"Decision intelligence is AI for decisions; it optimizes decision-making across a business," says Fred Laluyaux, CEO and co-founder of Aera Technology. "As decisions become more frequent and complex, organizations need faster, data-driven decisions. By recommending and automating actions, decision intelligence accelerates the decision cycle, improving efficiency, reducing costs, enhancing customer service, and facilitating responsiveness to change."

Laluyaux suggests decision intelligence is fundamentally altering how large enterprises work and make decisions, potentially reshaping business operations and creating new roles focused on managing this technology. Scaling these tools requires addressing bias and capturing the business context of each recommendation and decision. Real-time application to complex scenarios represents a new level of automation.

A Retrospective on Decision-Making

"Companies make countless decisions daily impacting costs, efficiency, and customer satisfaction. Often, there's no record explaining the rationale behind these decisions," Laluyaux explains. "This lack of insight perpetuates inefficiencies. Meanwhile, the pace and complexity of decisions continue to rise."

Aera's decision intelligence technology documents each decision and its reasoning. It goes beyond simple problem detection, aggregating data from various sources—structured databases, unstructured text, IoT devices, cloud applications—to provide a holistic view. The technology enables the creation of "decision flows" (schematics illustrating decision components) and integrates AI models while allowing custom interface development.

Gartner predicts that by 2026, 75% of Global 500 companies will utilize decision intelligence practices, including decision logging. Other forecasts suggest that by 2028, 15% of daily work decisions will be automated via agentic AI.

The Price of Inaction

"Failing to capture decision rationales leads to lost learning. Traditional back-testing reveals trends but not the 'why' behind human choices," Laluyaux states. "For example, a planner might override an AI forecast due to a known late customer order—information unavailable to the AI. Without recording the override reason, the model cannot learn, failing to anticipate similar situations."

Similarly, planners might reject AI suggestions due to perceived risk, distorting data through manual adjustments.

Aera serves clients including Unilever, Merck, ExxonMobil, Mars, Kraft Heinz, and Dell. But does decision intelligence unify the AI market and illuminate the path forward? The answer is multifaceted.

Aera's pre-built industry models for functions like supply chain management offer an advantage over basic RPA bots. Its closed-loop automation creates autonomous decision-making cycles based on approved protocols, exceeding the capabilities of basic analytics or task execution tools.

Limitations of Specialization?

However, specialization entails trade-offs. Aera's focus on specific enterprise functions limits its intelligence engine compared to IBM's Watsonx, which can process a broader range of information.

Aera also relies on businesses embracing autonomous decision-making, a concept not yet universally adopted.

Furthermore, Aera operates in a crowded market dominated by more established platforms with wider implementation and comprehensive partner ecosystems. In a complex technology landscape, this is a significant factor, regardless of AI capabilities.

以上是決策,決策……實用應用AI的下一步的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
AI遊戲開發通過Upheaval的Dreamer Portal進入其代理時代AI遊戲開發通過Upheaval的Dreamer Portal進入其代理時代May 02, 2025 am 11:17 AM

動盪遊戲:與AI代理商的遊戲開發徹底改變 Roupheaval是一家遊戲開發工作室,由暴風雪和黑曜石等行業巨頭的退伍軍人組成,有望用其創新的AI驅動的Platfor革新遊戲創作

Uber想成為您的Robotaxi商店,提供商會讓他們嗎?Uber想成為您的Robotaxi商店,提供商會讓他們嗎?May 02, 2025 am 11:16 AM

Uber的Robotaxi策略:自動駕駛汽車的騎車生態系統 在最近的Curbivore會議上,Uber的Richard Willder推出了他們成為Robotaxi提供商的乘車平台的策略。 利用他們在

AI代理玩電子遊戲將改變未來的機器人AI代理玩電子遊戲將改變未來的機器人May 02, 2025 am 11:15 AM

事實證明,視頻遊戲是最先進的AI研究的寶貴測試理由,尤其是在自主代理商和現實世界機器人的開發中,甚至有可能促進人工通用情報(AGI)的追求。 一個

創業公司工業綜合體VC 3.0和James Currier的宣言創業公司工業綜合體VC 3.0和James Currier的宣言May 02, 2025 am 11:14 AM

不斷發展的風險投資格局的影響在媒體,財務報告和日常對話中顯而易見。 但是,對投資者,初創企業和資金的具體後果經常被忽略。 風險資本3.0:範式

Adobe在Adobe Max London 2025更新創意云和螢火蟲Adobe在Adobe Max London 2025更新創意云和螢火蟲May 02, 2025 am 11:13 AM

Adobe Max London 2025對Creative Cloud和Firefly進行了重大更新,反映了向可訪問性和生成AI的戰略轉變。 該分析結合了事件前簡報中的見解,並融合了Adobe Leadership。 (注意:Adob

Llamacon宣布的所有元數據Llamacon宣布的所有元數據May 02, 2025 am 11:12 AM

Meta的Llamacon公告展示了一項綜合的AI策略,旨在直接與OpenAI等封閉的AI系統競爭,同時為其開源模型創建了新的收入流。 這個多方面的方法目標bo

關於AI僅僅是普通技術的主張的釀造爭議關於AI僅僅是普通技術的主張的釀造爭議May 02, 2025 am 11:10 AM

人工智能領域對這一論斷存在嚴重分歧。一些人堅稱,是時候揭露“皇帝的新衣”了,而另一些人則強烈反對人工智能僅僅是普通技術的觀點。 讓我們來探討一下。 對這一創新性人工智能突破的分析,是我持續撰寫的福布斯專欄文章的一部分,該專欄涵蓋人工智能領域的最新進展,包括識別和解釋各種有影響力的人工智能複雜性(請點擊此處查看鏈接)。 人工智能作為普通技術 首先,需要一些基本知識來為這場重要的討論奠定基礎。 目前有大量的研究致力於進一步發展人工智能。總目標是實現人工通用智能(AGI)甚至可能實現人工超級智能(AS

模型公民,為什麼AI值是下一個業務碼模型公民,為什麼AI值是下一個業務碼May 02, 2025 am 11:09 AM

公司AI模型的有效性現在是一個關鍵的性能指標。自AI BOOM以來,從編寫生日邀請到編寫軟件代碼的所有事物都將生成AI使用。 這導致了語言mod的擴散

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。