擴散生成模型(DGM)是一種基於深度學習的資料生成模型,它利用擴散過程的物理原理來產生資料。 DGM將資料視為一個初始狀態透過一系列擴散步驟逐漸演化而來的過程。這種模型在圖像、文字等多個領域的資料生成任務中得到了廣泛應用,並且具有較高的生成品質和泛化能力。透過學習資料的擴散過程,DGM可以產生具有逼真性和多樣性的資料樣本,有助於提升模型的生成能力和應用場景的拓展。
離散和連續是描述資料類型的概念。在離散資料中,每個資料點都是離散的,只能取某些特定的值,如整數或布林值。而在連續資料中,資料點可以取無限個數值,如實數值。在DGM中,離散和連續的概念也用來描述產生資料的類型。在離散資料的生成過程中,我們可以使用離散的機率分佈來描述每個取值的機率。而對於連續數據,我們可以使用機率密度函數來描述數據點的分佈。因此,離散和連續的概念在資料生成模型中具有重要的作用。
DGM中的離散和連續用於描述產生資料的分佈類型。離散DGM產生的資料分佈是離散的,如二進位影像或文字序列。而連續DGM產生的資料分佈是連續的,如灰階影像或音訊波形。
離散和連續的DGM之間最明顯的差異在於產生資料的分佈類型。在離散DGM中,產生的資料點只能取有限的幾個值,需要使用離散分佈來建模,例如伯努利分佈或多項式分佈。離散分佈的建模通常使用離散卷積或循環神經網路(RNN)來實現。而在連續DGM中,產生的資料點可以取任意值,因此可以使用連續分佈來建模,例如高斯分佈或均勻分佈。連續分佈的建模常常使用變分自動編碼器(VAE)或產生對抗網路(GAN)等方法。總之,離散DGM和連續DGM之間的顯著差異在於資料點的取值範圍和分佈建模方法的選擇。
在連續DGM中,產生的資料點可以取無限個實數值。因此,我們需要使用連續分佈(如高斯分佈或伽馬分佈)進行建模。這種連續分佈的建模通常涉及連續卷積或變分自編碼器(VAE)的使用。
另外,離散和連續的DGM還有一些其他的差異。首先,離散DGM通常需要使用更多的生成步驟來產生相同大小的數據,因為在每個步驟中只能產生一個離散數據點。其次,由於離散DGM使用了離散分佈來建模,因此在產生資料時可能會出現模型無法產生某些特定資料點的情況,稱為「缺失現象」。而在連續DGM中,由於使用了連續分佈來建模,模型可以產生任意實數值的資料點,因此不會出現缺失現象。
在實際應用中,離散和連續的DGM可以根據資料類型的不同選擇不同的模型來產生資料。例如,對於二進位影像或文字序列等離散數據,可以使用離散DGM來產生;而對於灰階影像或音訊波形等連續數據,則可以使用連續DGM來產生。此外,還可以將離散和連續的DGM進行組合,例如使用離散DGM產生文字序列,然後使用連續DGM將文字序列轉換為對應的影像。這種組合的方法可以在一定程度上提高生成資料的品質和多樣性。
以上是擴散生成模型的離散和連續的區別的詳細內容。更多資訊請關注PHP中文網其他相關文章!

人工智能Artificial Intelligence(AI)、机器学习Machine Learning(ML)和深度学习Deep Learning(DL)通常可以互换使用。但是,它们并不完全相同。人工智能是最广泛的概念,它赋予机器模仿人类行为的能力。机器学习是将人工智能应用到系统或机器中,帮助其自我学习和不断改进。最后,深度学习使用复杂的算法和深度神经网络来重复训练特定的模型或模式。让我们看看每个术语的演变和历程,以更好地理解人工智能、机器学习和深度学习实际指的是什么。人工智能自过去 70 多

众所周知,在处理深度学习和神经网络任务时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个比较低端的GPU,性能也会胜过CPU。深度学习是一个对计算有着大量需求的领域,从一定程度上来说,GPU的选择将从根本上决定深度学习的体验。但问题来了,如何选购合适的GPU也是件头疼烧脑的事。怎么避免踩雷,如何做出性价比高的选择?曾经拿到过斯坦福、UCL、CMU、NYU、UW 博士 offer、目前在华盛顿大学读博的知名评测博主Tim Dettmers就针对深度学习领域需要怎样的GPU,结合自

一. 背景介绍在字节跳动,基于深度学习的应用遍地开花,工程师关注模型效果的同时也需要关注线上服务一致性和性能,早期这通常需要算法专家和工程专家分工合作并紧密配合来完成,这种模式存在比较高的 diff 排查验证等成本。随着 PyTorch/TensorFlow 框架的流行,深度学习模型训练和在线推理完成了统一,开发者仅需要关注具体算法逻辑,调用框架的 Python API 完成训练验证过程即可,之后模型可以很方便的序列化导出,并由统一的高性能 C++ 引擎完成推理工作。提升了开发者训练到部署的体验

深度学习 (DL) 已成为计算机科学中最具影响力的领域之一,直接影响着当今人类生活和社会。与历史上所有其他技术创新一样,深度学习也被用于一些违法的行为。Deepfakes 就是这样一种深度学习应用,在过去的几年里已经进行了数百项研究,发明和优化各种使用 AI 的 Deepfake 检测,本文主要就是讨论如何对 Deepfake 进行检测。为了应对Deepfake,已经开发出了深度学习方法以及机器学习(非深度学习)方法来检测 。深度学习模型需要考虑大量参数,因此需要大量数据来训练此类模型。这正是

导读深度学习已在面向自然语言处理等领域的实际业务场景中广泛落地,对它的推理性能优化成为了部署环节中重要的一环。推理性能的提升:一方面,可以充分发挥部署硬件的能力,降低用户响应时间,同时节省成本;另一方面,可以在保持响应时间不变的前提下,使用结构更为复杂的深度学习模型,进而提升业务精度指标。本文针对地址标准化服务中的深度学习模型开展了推理性能优化工作。通过高性能算子、量化、编译优化等优化手段,在精度指标不降低的前提下,AI模型的模型端到端推理速度最高可获得了4.11倍的提升。1. 模型推理性能优化

Part 01 概述 在实时音视频通信场景,麦克风采集用户语音的同时会采集大量环境噪声,传统降噪算法仅对平稳噪声(如电扇风声、白噪声、电路底噪等)有一定效果,对非平稳的瞬态噪声(如餐厅嘈杂噪声、地铁环境噪声、家庭厨房噪声等)降噪效果较差,严重影响用户的通话体验。针对泛家庭、办公等复杂场景中的上百种非平稳噪声问题,融合通信系统部生态赋能团队自主研发基于GRU模型的AI音频降噪技术,并通过算法和工程优化,将降噪模型尺寸从2.4MB压缩至82KB,运行内存降低约65%;计算复杂度从约186Mflop

今天的主角,是一对AI界相爱相杀的老冤家:Yann LeCun和Gary Marcus在正式讲述这一次的「新仇」之前,我们先来回顾一下,两位大神的「旧恨」。LeCun与Marcus之争Facebook首席人工智能科学家和纽约大学教授,2018年图灵奖(Turing Award)得主杨立昆(Yann LeCun)在NOEMA杂志发表文章,回应此前Gary Marcus对AI与深度学习的评论。此前,Marcus在杂志Nautilus中发文,称深度学习已经「无法前进」Marcus此人,属于是看热闹的不

过去十年是深度学习的“黄金十年”,它彻底改变了人类的工作和娱乐方式,并且广泛应用到医疗、教育、产品设计等各行各业,而这一切离不开计算硬件的进步,特别是GPU的革新。 深度学习技术的成功实现取决于三大要素:第一是算法。20世纪80年代甚至更早就提出了大多数深度学习算法如深度神经网络、卷积神经网络、反向传播算法和随机梯度下降等。 第二是数据集。训练神经网络的数据集必须足够大,才能使神经网络的性能优于其他技术。直至21世纪初,诸如Pascal和ImageNet等大数据集才得以现世。 第三是硬件。只有


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能