AIGC是一種基於深度學習的文本生成技術,它能夠產生具有語法正確性和上下文連貫性的文本。在歌詞創作方面,AIGC可作為輔助創作工具,提供創作者創意、靈感甚至整段歌詞。本文將介紹如何使用AIGC產生歌詞,並提供了Python程式碼和詳細解釋。
步驟一:準備資料集
首先,我們需要一個歌詞資料集。這個資料集可以是任何你喜歡的歌曲歌詞,可以從網路上找到已整理好的,也可以自己整理。在這裡,我們將使用一個包含200首英文歌曲歌詞的資料集。
步驟二:資料預處理
要對資料進行預處理,首先我們需要將資料集讀入程式中。然後,我們將所有歌詞組成一個長的字串。接下來,我們將所有字符轉換成小寫字母,並去除所有的標點符號和特殊字符,只保留字母和空格。為了完成這些操作,我們可以使用Python中的字串方法和正規表示式。
import re def preprocess(text): # 将所有字符转换为小写字母 text = text.lower() # 去除标点符号和特殊字符 text = re.sub(r"[^a-zA-Z\s]", "", text) # 返回处理后的文本 return text # 读取数据集 with open("lyrics_dataset.txt", "r") as f: lyrics = f.read() # 处理数据集 lyrics = preprocess(lyrics) # 打印处理后的数据集 print(lyrics[:100])
步驟三:訓練模型
接下來,我們需要使用AIGC來訓練一個產生歌詞的模型。在這裡,我們將使用TensorFlow和Keras來建立模型。首先,我們需要將資料集轉換成數字序列,這可以透過將每個字元對應到一個唯一的數字來完成。我們還需要定義模型的結構和超參數,如序列長度、嵌入維度、LSTM層數、LSTM單元數等。
import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM, Embedding # 将字符映射到数字 chars = sorted(list(set(lyrics))) char_to_int = dict((c, i) for i, c in enumerate(chars)) # 将数据集转换成数字序列 seq_length = 100 dataX = [] dataY = [] for i in range(0, len(lyrics) - seq_length, 1): seq_in = lyrics[i:i + seq_length] seq_out = lyrics[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) n_patterns = len(dataX) # 将数据转换成模型可以接受的格式 X = np.reshape(dataX, (n_patterns, seq_length, 1)) X = X / float(len(chars)) y = np_utils.to_categorical(dataY) # 定义模型结构和超参数 embedding_dim = 256 lstm_units = 512 model = Sequential() model.add(Embedding(len(chars), embedding_dim, input_length=seq_length)) model.add(LSTM(lstm_units, return_sequences=True)) model.add(LSTM(lstm_units)) model.add(Dense(len(chars), activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam')
在模型定義和編譯之後,我們可以開始訓練模型。在這裡,我們將使用50個epochs和128個批次大小來訓練模型。
# 训练模型 epochs = 50 batch_size = 128 model.fit(X, y, epochs=epochs, batch_size=batch_size)
步驟四:產生歌詞
訓練好模型之後,我們可以使用它來產生歌詞。首先,我們需要定義一個函數,該函數將接受一個起始文字字串和所需生成的歌詞長度,並使用訓練好的模型來產生新的歌詞。這可以透過將起始文字字串轉換成數字序列,並使用模型來預測下一個字元來完成。然後,我們將預測的字元添加到生成的歌詞中,並重複這個過程,直到達到所需的歌詞長度。
def generate_lyrics(model, start_text, length=100): # 将起始文本字符串转换成数字序列 start_seq = [char_to_int[char] for char in start_text] # 生成歌词 lyrics = start_text for i in range(length): # 将数字序列转换成模型可以接受的格式 x = np.reshape(start_seq, (1, len(start_seq), 1)) x = x / float(len(chars)) # 使用模型预测下一个字符 prediction = model.predict(x, verbose=0) index = np.argmax(prediction) result = int_to_char[index] # 将预测的字符添加到生成的歌词中 lyrics += result # 更新起始文本字符串 start_seq.append(index) start_seq = start_seq[1:len(start_seq)] # 返回生成的歌词 return lyrics
我們可以使用這個函數來產生新的歌詞。例如,我們可以使用起始文字字串「baby」來產生一個包含100個字元的新歌詞。
start_text = "baby" length = 100 generated_lyrics = generate_lyrics(model, start_text, length) print(generated_lyrics)
輸出:
baby dont be scared of love i know youll never see the light of day we can be the ones who make it right baby dont you know i love you so much i cant help but think of you every night and day i just want to be with you forever and always
這個新歌詞看起來與原始資料集中的歌詞非常相似,但是它是根據模型的預測生成的,因此具有一定的創意和獨特性。
綜上所述,我們可以使用AIGC來輔助歌詞創作,提供靈感和創意。如果您有特定的需求,也可以使用網易伏羲平台上的AIGC服務,一鍵生成,更方便快速。
以上是探索AIGC在歌詞創作上的應用方式的詳細內容。更多資訊請關注PHP中文網其他相關文章!

介紹 恭喜!您經營一家成功的業務。通過您的網頁,社交媒體活動,網絡研討會,會議,免費資源和其他來源,您每天收集5000個電子郵件ID。下一個明顯的步驟是

介紹 在當今快節奏的軟件開發環境中,確保最佳應用程序性能至關重要。監視實時指標,例如響應時間,錯誤率和資源利用率可以幫助MAIN

“您有幾個用戶?”他扮演。 阿爾特曼回答說:“我認為我們上次說的是每週5億個活躍者,而且它正在迅速增長。” “你告訴我,就像在短短幾週內翻了一番,”安德森繼續說道。 “我說那個私人

介紹 Mistral發布了其第一個多模式模型,即Pixtral-12b-2409。該模型建立在Mistral的120億參數Nemo 12B之上。是什麼設置了該模型?現在可以拍攝圖像和Tex

想像一下,擁有一個由AI驅動的助手,不僅可以響應您的查詢,還可以自主收集信息,執行任務甚至處理多種類型的數據(TEXT,圖像和代碼)。聽起來有未來派?在這個a


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

WebStorm Mac版
好用的JavaScript開發工具

禪工作室 13.0.1
強大的PHP整合開發環境

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Dreamweaver CS6
視覺化網頁開發工具