Wasserstein距離,也稱為Earth Mover's Distance,是一種用於度量兩個機率分佈之間的距離的數學方法。相較於傳統的距離度量方法如歐幾里德距離,Wasserstein距離更全面地考慮了分佈間的相似性以及幾何距離之間的關係,從而更適合描述高維度資料集的相似性。透過將一個分佈轉化為另一個分佈所需的最小總成本來計算Wasserstein距離。這個成本可以被解釋為將一個分佈中的品質從一個位置轉移至另一個位置所需的工作量。因此,Wasserstein距離可以被視為兩個分佈間的質量轉移成本。這使得Wasserstein距離在許多領域中有廣泛應用,包括影像處理、自然語言處理、經濟學等。透過考慮分佈間的相似性和幾何距
Wasserstein距離的定義是基於最小化將一個分佈轉換為另一個分佈所需的成本。這個成本可以是任意的,但通常是指將一個分佈中的質量從一個位置移動到另一個位置所需的成本,可以用兩個位置之間的距離和質量的乘積來表示。 Wasserstein距離的值等於所有可能的轉換方案的成本的最小值。
在數學上,Wasserstein距離可以定義為:
#W_p(\mu,\nu)=\left(\inf_{\ gamma\in\Gamma(\mu,\nu)}\int_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^p d\gamma(x,y)\right)^{ 1/p}
其中,\mu和\nu是兩個機率分佈,\Gamma(\mu,\nu)是將\mu轉換為\nu的所有機率分佈的集合,\gamma(x,y)表示將(x,y)對應的轉換機率。在Wasserstein距離中,p \geq 1是一個常數,通常取p=1或p=2。當p=1時,Wasserstein距離也被稱為Earth Mover's Distance,因為它可以被視為將一個分佈轉移到另一個分佈所需的最小操作次數的度量。
為了更好地理解Wasserstein距離的概念,我們可以考慮一個簡單的例子:假設我們有兩個一維的機率分佈P和Q,它們分別在區間[0 ,1]和[0.5,1.5]上均勻分佈。我們可以使用Python和Scipy庫來計算它們之間的Wasserstein距離。
import numpy as np from scipy.stats import wasserstein_distance # 定义两个概率分布 P 和 Q P = np.ones(100) / 100 Q = np.ones(100) / 100 Q[50:] = 0 # 计算它们之间的Wasserstein距離 w_dist = wasserstein_distance(P, Q) print("Wasserstein distance:", w_dist)
在這個例子中,我們使用numpy函式庫產生了兩個100個元素的機率分佈,它們都是均勻分佈的。然後,我們將第二個分佈Q的後50個元素設為0,以模擬它在區間[0.5,1]上的分佈。最後,我們使用Scipy庫中的wasserstein_distance函數計算它們之間的Wasserstein距離。運行程式碼後,我們可以得到輸出結果:
Wasserstein distance: 0.5
這意味著將分佈P轉換為分佈Q所需的最小成本為0.5。在這個例子中,我們可以將它解釋為將長度為0.5的土堆移動到長度為0.5的坑中所需的最小距離。
總之,Wasserstein距離是一種用於衡量兩個機率分佈之間距離的方法,它考慮了分佈之間的相似性和幾何距離之間的關係。它有許多應用,例如生成對抗網路(GAN)中的損失函數和圖像檢索中的相似性度量。
以上是Wasserstein距離的詳細內容。更多資訊請關注PHP中文網其他相關文章!

斯坦福大學以人為本人工智能研究所發布的《2025年人工智能指數報告》對正在進行的人工智能革命進行了很好的概述。讓我們用四個簡單的概念來解讀它:認知(了解正在發生的事情)、欣賞(看到好處)、接納(面對挑戰)和責任(弄清我們的責任)。 認知:人工智能無處不在,並且發展迅速 我們需要敏銳地意識到人工智能發展和傳播的速度有多快。人工智能係統正在不斷改進,在數學和復雜思維測試中取得了優異的成績,而就在一年前,它們還在這些測試中慘敗。想像一下,人工智能解決複雜的編碼問題或研究生水平的科學問題——自2023年

Meta的Llama 3.2:多模式和移動AI的飛躍 Meta最近公佈了Llama 3.2,這是AI的重大進步,具有強大的視覺功能和針對移動設備優化的輕量級文本模型。 以成功為基礎

本週的AI景觀:進步,道德考慮和監管辯論的旋風。 OpenAI,Google,Meta和Microsoft等主要參與者已經釋放了一系列更新,從開創性的新車型到LE的關鍵轉變

連接的舒適幻想:我們在與AI的關係中真的在蓬勃發展嗎? 這個問題挑戰了麻省理工學院媒體實驗室“用AI(AHA)”研討會的樂觀語氣。事件展示了加油

介紹 想像一下,您是科學家或工程師解決複雜問題 - 微分方程,優化挑戰或傅立葉分析。 Python的易用性和圖形功能很有吸引力,但是這些任務需要強大的工具

Meta's Llama 3.2:多式聯運AI強力 Meta的最新多模式模型Llama 3.2代表了AI的重大進步,具有增強的語言理解力,提高的準確性和出色的文本生成能力。 它的能力t

數據質量保證:與Dagster自動檢查和良好期望 保持高數據質量對於數據驅動的業務至關重要。 隨著數據量和源的增加,手動質量控制變得效率低下,容易出現錯誤。

大型機:AI革命的無名英雄 雖然服務器在通用應用程序上表現出色並處理多個客戶端,但大型機是專為關鍵任務任務而建立的。 這些功能強大的系統經常在Heavil中找到


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Dreamweaver CS6
視覺化網頁開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能