機器學習在各種規模的組織中已經成為獲取洞察力和做出數據驅動決策的重要工具。然而,機器學習專案的成功很大程度上取決於數據的品質。數據品質差會導致預測不準確和模型性能差。因此,了解數據品質在機器學習中的重要性以及採用各種技術確保高品質數據是至關重要的。
資料是機器學習不可或缺的重要資源,不同類型的資料在模型建構中發揮各自的作用。分類資料、數值資料、時間序列資料和文字資料等多種資料類型被廣泛應用。高品質數據的可用性是確保模型準確可靠的關鍵因素。
如何確保資料品質?
一般會透過收集資料、資料注入、資料預處理和特徵來工作這4個步驟。具體為:
收集資料
機器學習的資料準備通常稱為用於提取、轉換和載入的ETL管道。
提取:從不同來源取得數據,包括資料庫、API或常見檔案(如CSV或Excel)。資料可以是結構化或非結構化的。
轉換是將資料調整為適用於機器學習模型的過程。它包括清理數據以消除錯誤或不一致性,標準化數據,並將其轉換為模型可接受的格式。此外,還需要進行特徵工程,將原始資料轉換為一組特徵,作為模型的輸入。
載入:最後一步是將轉換後的資料上傳或載入到目的地,如資料庫、資料儲存或檔案系統。產生的資料可用於訓練或測試機器學習模型。
收集完資料後,就需要注入資料。
資料注入
為了提升機器學習模型的效能,我們需要為現有資料伺服器新增數據,以更新資料庫並增加更多不同的資料。這個過程通常會藉助方便的工具來自動化完成。
如:
批量插入:批量插入數據,通常是在固定的時間。
即時注入:資料產生後立即註入。
流注入:資料以連續流的形式註入。它經常實時使用。
資料管道的第三階段是資料預處理。
資料預處理
資料處理正在準備用於機器學習模型的數據,這是機器學習中的一個重要步驟,因為它確保資料採用模型可以使用的格式,並且任何錯誤或不一致都已解決。
資料處理通常涉及資料清洗、資料轉換和資料標準化的組合。資料處理的具體步驟取決於資料類型和您使用的機器學習模型。
資料處理的通用流程:
通用步驟:
1.資料清理:從資料庫中刪除錯誤、不一致和異常值。
2.資料轉換:資料轉換為機器學習模型可以使用的形式,例如將分類變數轉換為數值變數。
3.數據規範化:在0到1之間的特定範圍內縮放數據,這有助於提高某些機器學習模型的效能。
4.新增資料:向現有資料點新增變更或操作以建立新資料點。
5.特徵選擇或提取:從資料中識別並選擇基本特徵以用作機器學習模型的輸入。
6.離群值偵測:辨識並刪除與大量資料明顯偏離的資料點。離群值會改變分析結果並對機器學習模型的表現產生不利影響。
7.偵測重複:辨識並刪除重複的資料點。重複資料會導致不準確或不可靠的結果,並增加資料集的大小,使其難以處理和分析。
8.識別趨勢:在您的資料中尋找模式和趨勢,您可以使用這些模式和趨勢為未來的預測提供資訊或更好地了解資料的性質。
資料處理在機器學習中是必不可少的,因為它確保資料採用模型可以使用的形式,並消除任何錯誤或不一致。這提高了模型的性能和預測的準確性。
資料管道的最後階段是特徵工程。
特徵工程
特徵工程將原始資料轉換為可用作機器學習模型輸入的特徵。這涉及從原材料中識別和提取最關鍵的數據,並將其轉換為模型可以使用的格式。特徵工程在機器學習中必不可少,因為它可以顯著影響模型性能。
特徵工程涉及:
特徵提取:從原始資料中提取相關資訊。例如,確定最重要的特徵或組合現有特徵以建立新特徵。
屬性修改:變更屬性類型,例如將分類變數變更為數值變數或縮放資料以適合特定範圍。
特徵選擇:確定資料的基本特徵以用作機器學習模型的輸入。
降維:透過刪除冗餘或不相關的特徵來減少資料庫中的特徵數量。
新增資料:向現有資料點新增變更或操作以建立新資料點。
特徵工程需要很好地理解資料、要解決的問題以及要使用的機器學習演算法。此過程是迭代和實驗性的,可能需要多次迭代才能找到可提高模型性能的最佳特徵集。
以上是保證在機器學習中資料品質的重要性及其確認方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Apollo Research的一份新報告顯示,先進的AI系統的不受檢查的內部部署構成了重大風險。 在大型人工智能公司中缺乏監督,普遍存在,允許潛在的災難性結果

傳統測謊儀已經過時了。依靠腕帶連接的指針,打印出受試者生命體徵和身體反應的測謊儀,在識破謊言方面並不精確。這就是為什麼測謊結果通常不被法庭採納的原因,儘管它曾導致許多無辜者入獄。 相比之下,人工智能是一個強大的數據引擎,其工作原理是全方位觀察。這意味著科學家可以通過多種途徑將人工智能應用於尋求真相的應用中。 一種方法是像測謊儀一樣分析被審問者的生命體徵反應,但採用更詳細、更精確的比較分析。 另一種方法是利用語言標記來分析人們實際所說的話,並運用邏輯和推理。 俗話說,一個謊言會滋生另一個謊言,最終

航空航天業是創新的先驅,它利用AI應對其最複雜的挑戰。 現代航空的越來越複雜性需要AI的自動化和實時智能功能,以提高安全性,降低操作

機器人技術的飛速發展為我們帶來了一個引人入勝的案例研究。 來自Noetix的N2機器人重達40多磅,身高3英尺,據說可以後空翻。 Unitree公司推出的G1機器人重量約為N2的兩倍,身高約4英尺。比賽中還有許多體型更小的類人機器人參賽,甚至還有一款由風扇驅動前進的機器人。 數據解讀 這場半程馬拉松吸引了超過12,000名觀眾,但只有21台類人機器人參賽。儘管政府指出參賽機器人賽前進行了“強化訓練”,但並非所有機器人均完成了全程比賽。 冠軍——由北京類人機器人創新中心研發的Tiangong Ult

人工智能以目前的形式並不是真正智能的。它擅長模仿和完善現有數據。 我們不是在創造人工智能,而是人工推斷 - 處理信息的機器,而人類則

一份報告發現,在谷歌相冊Android版7.26版本的代碼中隱藏了一個更新的界面,每次查看照片時,都會在屏幕底部顯示一行新檢測到的面孔縮略圖。 新的面部縮略圖缺少姓名標籤,所以我懷疑您需要單獨點擊它們才能查看有關每個檢測到的人員的更多信息。就目前而言,此功能除了谷歌相冊已在您的圖像中找到這些人之外,不提供任何其他信息。 此功能尚未上線,因此我們不知道谷歌將如何準確地使用它。谷歌可以使用縮略圖來加快查找所選人員的更多照片的速度,或者可能用於其他目的,例如選擇要編輯的個人。我們拭目以待。 就目前而言

增強者通過教授模型根據人類反饋進行調整來震撼AI的開發。它將監督的學習基金會與基於獎勵的更新融合在一起,使其更安全,更準確,真正地幫助

科學家已經廣泛研究了人類和更簡單的神經網絡(如秀麗隱桿線蟲中的神經網絡),以了解其功能。 但是,出現了一個關鍵問題:我們如何使自己的神經網絡與新穎的AI一起有效地工作


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

記事本++7.3.1
好用且免費的程式碼編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3漢化版
中文版,非常好用

Dreamweaver CS6
視覺化網頁開發工具