#測試資料流應為時變分佈(而非傳統領域適應中的固定分佈) 測試資料流可能存在局部類別相關性(而非完全獨立同分佈取樣) 測試資料流在較長時間裡仍表現全域類別不平衡
#深度神經網路的成功取決於將訓練好的模型推廣到i.i.d. 測試域的假設。然而,在實際應用中,分佈外測試資料的穩健性,如不同的照明條件或惡劣天氣造成的視覺損壞,是一個需要關注的問題。最近的研究顯示,這種資料損失可能會嚴重影響預先訓練好的模型的表現。重要的是,在部署前,測試資料的損壞(分佈)通常是未知的,有時也不可預測。
因此,調整預訓練模型以適應推理階段的測試資料分佈是一個值得價值的新課題,即測試時領域適 (TTA)。先前,TTA 主要透過分佈對齊 (TTAC , TTT ),自監督訓練 (AdaContrast) 和自訓練 (Conjugate PL) 來實現,這些方法在多種視覺損壞測試資料中都帶來了顯著的穩健提升。
現有的測試時領域適應(TTA)方法通常基於一些嚴格的測試資料假設,如穩定的類別分佈、樣本服從獨立同分佈取樣以及固定的領域偏移。這些假設啟發了許多研究者去探討真實世界中的測驗資料流,如 CoTTA、NOTE、SAR 和 RoTTA 等。
最近,對真實世界的 TTA 研究,如 SAR(ICLR 2023)和 RoTTA(CVPR 2023)主要關注局部類別不平衡和連續的領域偏移對 TTA 帶來的挑戰。局部類別不平衡通常是由於測試資料並非獨立同分佈採樣而產生的。直接不加區分的領域適應將導致有偏壓的分佈估計。
最近有研究提出了指數式更新批次統計量(RoTTA)或實例層級判別更新批次統計量(NOTE)來解決這個挑戰。其研究目標是超越局部類別不平衡的挑戰,考慮到測試資料的整體分佈可能嚴重失衡,類別的分佈也可能隨著時間的推移而變化。在下圖 1 可以看到更具挑戰性的場景示意圖。
隨著時間的推移,領域轉移在現實世界的測試數據中經常發生,例如照明 / 天氣條件的逐漸變化。這給現有的 TTA 方法帶來了另一個挑戰,TTA 模型可能會因為過度適應到領域 A 而當從領域 A 切換到領域 B 時出現矛盾。
為了緩解過度適應到某個短時領域,CoTTA 隨機還原參數,EATA 用 fisher information 對參數進行正規化約束。儘管如此,這些方法仍然沒有明確解決測試資料領域中層出不窮的挑戰。
本文在兩分支自訓練架構的基礎上引入了一個錨定網路(Anchor Network)組成三網路自訓練模型(Tri-Net Self-Training)。錨定網路是一個凍結的來源模型,但允許透過測試樣本調整批歸一化層中的統計量而非參數。並提出了一個錨定損失利用錨定網路的輸出來正則化教師模型的輸出以避免網路過度適應到局部分佈。
最終模型結合了三網絡自訓練模型和平衡的批歸一化層(TRI-net self-training with BalancEd normalization, TRIBE)在較為寬泛的的可調節學習率的範圍裡表現出一致的優越性能。在四個資料集和多種真實世界資料流中顯示了大幅效能提升,展現了獨一檔的穩定性和穩健性。
-
#介紹真實世界下的TTA 協定; 平衡的批次歸一化; 三網路自訓練模型。


下圖展示了TRIBE 網路的框架圖:
以上是TRIBE實現領域適應的穩健性,在多真實場景下達到SOTA的AAAII 2024的詳細內容。更多資訊請關注PHP中文網其他相關文章!

介紹 恭喜!您經營一家成功的業務。通過您的網頁,社交媒體活動,網絡研討會,會議,免費資源和其他來源,您每天收集5000個電子郵件ID。下一個明顯的步驟是

介紹 在當今快節奏的軟件開發環境中,確保最佳應用程序性能至關重要。監視實時指標,例如響應時間,錯誤率和資源利用率可以幫助MAIN

“您有幾個用戶?”他扮演。 阿爾特曼回答說:“我認為我們上次說的是每週5億個活躍者,而且它正在迅速增長。” “你告訴我,就像在短短幾週內翻了一番,”安德森繼續說道。 “我說那個私人

介紹 Mistral發布了其第一個多模式模型,即Pixtral-12b-2409。該模型建立在Mistral的120億參數Nemo 12B之上。是什麼設置了該模型?現在可以拍攝圖像和Tex

想像一下,擁有一個由AI驅動的助手,不僅可以響應您的查詢,還可以自主收集信息,執行任務甚至處理多種類型的數據(TEXT,圖像和代碼)。聽起來有未來派?在這個a


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

WebStorm Mac版
好用的JavaScript開發工具