有關趣解機器學習演算法的內容是下一篇文章的主題。這篇文章是為了AI產品經理同學而分享的,強烈推薦給剛踏入這個領域的同學們!
之前我們聊過關於人工智慧的產業、產品經理的第二曲線以及兩個職位的區別,那這次我們再深入一層——趣解機器學習演算法。
機器學習演算法可能聽起來有些高深莫測,我明白很多人包括我一開始都感到頭疼,我盡量不用公式,只用案例的形式來呈現,我們從整體到局部逐步深入。
一、機器學習演算法概述
首先,我們來了解機器學習演算法的基本概念。
機器學習是一種讓電腦透過資料學習和改進的方法,而機器學習演算法就是實現這一目標的工具
簡單來說,機器學習演算法就是一套規則或模型,它可以根據輸入的資料來學習,然後根據學習到的知識做出預測或決策。
趣解時刻:想像一下,你正在參加一個神祕的尋寶遊戲。遊戲中,你需要根據一張藏寶圖找到寶藏的位置。這張藏寶圖就是數據,而你要做的就是透過分析這些數據來找到寶藏。在現實生活中,我們可以透過機器學習演算法來實現這個任務。
機器學習演算法就像一個智慧的尋寶機器人,它可以從大量的資料中學習規律,然後根據這些規律做出預測或決策。機器學習演算法的核心目標是降低資料到結果的映射誤差,從而使我們的產品更加聰明、準確。
機器學習演算法的應用場景非常廣泛,常見的應用包括分類問題、聚類分析和迴歸問題。這三種應用場景在現實生活中都有各自的應用。接下來將會分別介紹它們的應用場景及實際應用
二、情境一:分類難題
1)應用場景:分類判斷、標籤預測、行為預測。
2)解決原理:訓練已知的數據,對未知數據進行預測(包含二分類和多分類,如預測結果只有兩個離散的值,如“0/1、是/否”則為二分類,如預測結果是多個離散的值,如“A/B/C”則為多分類)。
常見的分類演算法有以下幾種:
- 決策樹:決策樹是一種基於樹結構的分類演算法,它透過一系列的問題來對資料進行分類。
- 支援向量機:支援向量機是一種基於幾何概念的分類演算法,它透過找到資料空間中的最大間隔超平面來進行分類。
4)案例:防止垃圾郵件
垃圾郵件過濾是典型的分類問題。我們可以採用支援向量機演算法來解決這個問題。透過對模型進行訓練,我們能夠根據郵件中的關鍵字、寄件者等訊息,準確地判斷郵件是垃圾郵件還是正常郵件
三、場景二:聚類分析
1)應用程式場景:使用者分組、使用者畫像
#2)解決原則:聚類分析是將一組資料分成若干個類別的過程。這些類別是根據資料的內在屬性或相似性來劃分的。用一個字概括它的特徵是 「物以類聚」。
3)常見的聚類演算法
- K 均值聚類:K 均值聚類是一種基於距離的聚類演算法。它透過迭代計算資料點之間的距離,將資料點劃分為 K 個類別。
- 層次聚類:層次聚類是一種基於距離的聚類演算法。它透過計算資料點之間的距離,逐步將相近的資料點劃分為一類。
4)案例:客戶細分
對於客戶細分而言,它是一種常見的聚類分析應用。我們可以運用K均值聚類演算法,依照客戶的消費金額、購買頻率等屬性,將客戶分組到不同的類別中,以便進行精確的行銷策略制定
四、場景三:回歸問題
1)應用場景:預測未來價格、銷售量。
2)解決原則:根據樣本的分佈擬合一個圖形(直線/曲線),形成方程組,輸入參數,預測未來具體數值。
3)常見的迴歸演算法
- 線性迴歸:線性迴歸是一種基於線性關係的迴歸演算法。它透過擬合數據點的線性關係,來預測未來數據。
- 決策樹迴歸:決策樹迴歸是一種基於樹結構的迴歸演算法。它透過一系列的問題,來預測目標值。
- 支援向量機迴歸:支援向量機迴歸是一種基於幾何概念的迴歸演算法。它透過找到資料空間中的最大間隔超平面,來預測目標值。
4)案例股票價格預測
股票價格預測是典型的迴歸問題。我們可以使用線性迴歸或支援向量機迴歸演算法,根據歷史股價數據,來預測未來股價。
五、最後的話
總結一下,這篇文章的主要目的是為了介紹主流的機器學習演算法。接下來,我將逐一解析三種應用場景的演算法。如果你們想了解哪些演算法知識,請在評論區分享,歡迎共同創造和分享
希望能為你帶來一些靈感,加油!
請勿轉載本文,本文由 @柳星聊產品 在人人都是產品經理上原始發布,未經許可
題圖來自Unsplash,基於 CC0 協定
以上是AI產品經理必讀!入門機器學習演算法的小白指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

介紹 恭喜!您經營一家成功的業務。通過您的網頁,社交媒體活動,網絡研討會,會議,免費資源和其他來源,您每天收集5000個電子郵件ID。下一個明顯的步驟是

介紹 在當今快節奏的軟件開發環境中,確保最佳應用程序性能至關重要。監視實時指標,例如響應時間,錯誤率和資源利用率可以幫助MAIN

“您有幾個用戶?”他扮演。 阿爾特曼回答說:“我認為我們上次說的是每週5億個活躍者,而且它正在迅速增長。” “你告訴我,就像在短短幾週內翻了一番,”安德森繼續說道。 “我說那個私人

介紹 Mistral發布了其第一個多模式模型,即Pixtral-12b-2409。該模型建立在Mistral的120億參數Nemo 12B之上。是什麼設置了該模型?現在可以拍攝圖像和Tex

想像一下,擁有一個由AI驅動的助手,不僅可以響應您的查詢,還可以自主收集信息,執行任務甚至處理多種類型的數據(TEXT,圖像和代碼)。聽起來有未來派?在這個a


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

WebStorm Mac版
好用的JavaScript開發工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。