原文標題:FlashOcc: Fast and Memory-Efficient Occupancy Prediction via Channel-to-Height Plugin
論文連結:https://arxiv.org/pdf/2311.12058.pdf
作者單位:大連理工大學Houmo AI 阿德萊德大學
#論文想法:
鑑於能夠緩解3D 目標偵測中普遍存在的長尾缺陷和複雜形狀缺失的能力,佔用預測已成為自動駕駛系統的關鍵組成部分。然而,三維體素級表示的處理不可避免地會在記憶體和計算方面引入大量開銷,阻礙了迄今為止的佔用預測方法的部署。與使模型變得更大、更複雜的趨勢相反,本文認為理想的框架應該對不同的晶片進行部署友好,同時保持高精度。為此,本文提出了一種即插即用範例,即 FlashOCC,以鞏固快速且節省記憶體的佔用預測,同時保持高精度。特別是,本文的 FlashOCC 是基於當代體素級佔用預測方法做出了兩項改進。首先,特徵保留在 BEV 中,從而能夠使用高效的 2D 卷積層進行特徵提取。其次,引入通道到高度變換(channel-to-height transformation) ,將 BEV 的輸出 logits 提升到 3D 空間。本文將 FlashOCC 應用於具有挑戰性的 Occ3D-nuScenes 基準的各種佔用預測基線,並進行廣泛的實驗來驗證其有效性。結果證實了本文的即插即用範例在精度、運行時效率和記憶體成本方面優於以前最先進的方法,展示了其部署潛力。該代碼將可供使用。
網路設計:
受到sub-pixel convolution 技術[26] 的啟發,我們將影像上取樣替換為通道重新排列,以實現通道到空間的特徵轉換。在本文的研究中,我們的目標是有效地實現通道到高度的特徵轉換。考慮到BEV 感知任務的發展,其中BEV 表示中的每個像素包含有關相應柱狀物體在高度維度上的信息,我們直觀地利用通道到高度變換(channel-to-height transformation)將扁平化的BEV 特徵重新塑造為三維體素層級的佔用logits。因此,我們的研究專注於以通用和即插即用的方式增強現有模型,而不是開發新穎的模型架構,如圖1 (a) 所示。具體來說,我們直接使用 2D 卷積取代當代方法中的 3D 卷積,並用透過 2D 卷積獲得的 BEV 級特徵的通道到高度變換來取代從 3D 卷積輸出中得到的佔用 logits。這些模型不僅實現了準確性和時間消耗之間的最佳權衡,還展現出了出色的部署兼容性FlashOcc 成功地以極高的精度成功完成了實時環視3D 佔用預測,代表了該領域的開創性貢獻。此外,它還展現了跨不同車載平台部署的增強的多功能性,因為它不需要昂貴的體素級特徵處理,其中避免了 view transformer 或 3D(可變形)卷積算子。如圖2所示,FlashOcc的輸入資料由環視圖像組成,而輸出則是密集的佔用預測結果。儘管本文的FlashOcc專注於以通用和即插即用的方式增強現有模型,但它仍然可以分為五個基本模組:(1)2D影像編碼器,負責從多相機影像中提取影像特徵。 (2) 視圖轉換模組,有助於將 2D 感知視圖影像特徵對應到 3D BEV 表示。 (3) BEV 編碼器,負責處理 BEV 特徵資訊。 (4) 佔用預測模組,預測每個體素的分割標籤。 (5) 一個可選的時間融合模組,旨在整合歷史資訊以提高效能。
圖 1.(a) 說明如何以即插即用的方式實作所提出的 FlashOcc。現代方法使用 3D-Conv 處理的體素級 3D 特徵來預測佔用率。相較之下,本文的插件替代模型透過(1) 以2D-Conv 取代3D-Conv 以及(2) 以通道到高度變換(channel-to-height transformation) 取代從3D-Conv 導出的佔用logits,實現快速且節省記憶體的佔用預測透過2D-Conv 取得的BEV 等級特徵。縮寫“Conv”代表卷積。 (b) 舉例說明了準確性與速度、推理記憶體消耗和訓練持續時間等因素之間的權衡。
圖4展示了3D體素級表示處理和本文提出的插件替換之間的架構比較
實驗結果:
總結:
本文介紹了一種名為FlashOCC的即插即用方法,旨在實現快速且記憶體高效的佔用預測。此方法使用2D卷積直接取代基於體素的佔用方法中的3D卷積,並結合通道到高度變換(channel-to-height transformation)將扁平化的BEV特徵重新塑造為佔用logits。 FlashOCC已在多種體素級佔用預測方法中證明了其有效性和通用性。大量實驗證明該方法在精度、時間消耗、記憶體效率和部署友善性方面優於以前最先進的方法。據本文所知,FlashOCC是第一個將sub-pixel範式(Channel-to-Height)應用於佔用任務的方法,專門利用BEV級特徵,完全避免使用計算3D(可變形)卷積或transformer模組。視覺化結果令人信服地證明FlashOCC成功保留了高度資訊。在未來的工作中,該方法將被整合到自動駕駛的感知管道中,旨在實現高效的on-chip部署
#引用:
Yu, Z., Shu, C., Deng, J., Lu, K., Liu, Z., Yu, J., Yang, D., Li, H., & Chen, Y. (2023). FlashOcc: Fast and Memory-Efficient Occupancy Prediction via Channel-to-Height Plugin. ArXiv. /abs/2311.12058
以上是FlashOcc:佔用預測新思路,精確度、效率和記憶體佔用新SOTA!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

AI增強食物準備 在新生的使用中,AI系統越來越多地用於食品製備中。 AI驅動的機器人在廚房中用於自動化食物準備任務,例如翻轉漢堡,製作披薩或組裝SA

介紹 了解Python函數中變量的名稱空間,範圍和行為對於有效編寫和避免運行時錯誤或異常至關重要。在本文中,我們將研究各種ASP

介紹 想像一下,穿過美術館,周圍是生動的繪畫和雕塑。現在,如果您可以向每一部分提出一個問題並獲得有意義的答案,該怎麼辦?您可能會問:“您在講什麼故事?

繼續使用產品節奏,本月,Mediatek發表了一系列公告,包括新的Kompanio Ultra和Dimenty 9400。這些產品填補了Mediatek業務中更傳統的部分,其中包括智能手機的芯片

#1 Google推出了Agent2Agent 故事:現在是星期一早上。作為AI驅動的招聘人員,您更聰明,而不是更努力。您在手機上登錄公司的儀表板。它告訴您三個關鍵角色已被採購,審查和計劃的FO

我猜你一定是。 我們似乎都知道,心理障礙由各種chat不休,這些chat不休,這些chat不休,混合了各種心理術語,並且常常是難以理解的或完全荒謬的。您需要做的一切才能噴出fo

根據本週發表的一項新研究,只有在2022年製造的塑料中,只有9.5%的塑料是由回收材料製成的。同時,塑料在垃圾填埋場和生態系統中繼續堆積。 但是有幫助。一支恩金團隊

我最近與領先的企業分析平台Alteryx首席執行官安迪·麥克米倫(Andy Macmillan)的對話強調了這一在AI革命中的關鍵但不足的作用。正如Macmillan所解釋的那樣,原始業務數據與AI-Ready Informat之間的差距


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3漢化版
中文版,非常好用