搜尋
首頁科技週邊人工智慧如何提高人工智慧的可觀測性?

在當前的時代背景下,我們可以理解對過去的懷念,但是我們必須意識到我們正身處於一個不同的環境中。因此,可觀測性永遠不會再和以前一樣了

AI如何提升可觀測性

最近,可觀測性變得越來越複雜,肯定比IT監控的早期階段要複雜得多,那時所有的事物都在大型主機上運行,日誌和所有可用的監控資料都可以輕鬆地收集和視覺化。

即使在更近期應用成為大多數組織的核心之後,情況也簡單得多。然而,在我們目前的Kubernetes、微服務和無伺服器的世界,情況看起來大不相同。想像用錘子擊碎過去那可以輕鬆觀測的流動,看著它分解成上百塊碎片;但是,所有這些小碎片仍必須保持緊密相連並持續交流。

從本質上講,這種情況是由最初引入的抽象化和虛擬化造成的。當Kubernetes出現時,其短暫而快速的變化和分散式特性增加了許多複雜性。在這種情況下,一切都變得更加難以管理,監控和故障排除也更加困難;許多人感到茫然不知所措,不知道自己陷入了什麼局面。我們可能會問自己——是否真的需要讓一切變得如此複雜?

我們可以理解人們對過去的懷念,但是由於我們現在所處的環境,可觀測性永遠不會再和從前一樣了

重新審視「現代」可觀測性的界限

首先,讓我們回退一步,介紹一些基本原則,從定義開始。在我們的雲端基礎設施和應用程式的背景下,可觀測性是一種藝術,它透過檢查軟體並基於數據做出決策來監控和修復生產系統。關鍵是要注意,這些決策應該專注於特定的結果和服務等級目標,而不僅僅是持續的監控、警報和故障排除

接下來,我們來思考在當今世界中設計一個可靠的可觀測性系統的藝術。特別是在編碼或基礎設施問題已經發展成大數據問題的領域,我們需要找到方法來提高這些現代可觀測性系統的運算、網路和儲存效率需求。要注意的是,更多的數據並不表示一定會有更好的洞見

事實證明,抽象化、虛擬化和微服務只是冰山一角。隨著人工智慧工具的出現和持續採用,例如Copilot、Code Whisperer等,人類處理、分析和關聯數十億個不同的事件來理解他們編寫的程式碼是否按預期運行,這實際上上成為一個無法解決的問題。再次,可觀測性成為一個迫在眉睫的大數據難題。

即使工程師具有理解可觀測性訊號以及如何分析遙測資料的技能-這是難以取得的人才-要分類的海量資料也是不現實的,甚至是驚人的。事實是,大量數據中絕大部分對洞察關鍵業務系統的效能並沒有特別大的用處。

更多並不意味著更好。同時,大多數流行的可觀測性解決方案表明,為了解決龐大的資料流和複雜性這一大數據問題,需要使用大量複雜的功能和額外的工具——所有這些都需要一個昂貴的價格標籤來應對數據的膨脹。但仍有希望

迎接人工智慧可觀測性時代

在微服務和人工智慧生成程式碼的現代可觀測性時代,我們不需要過於複雜或昂貴的可觀測性。是的,隨著人工智慧應用的不斷增長,我們看到了巨大的希望。驅動人工智慧驅動程式碼的大語言模型(LLM)為可觀測性提供了一種新的方法

這是如何運作的? LLM正在變得善於處理、學習和識別大規模重複文字資料中的模式——這正是高度分散式和動態系統中的日誌資料和其他遙測的本質特徵。 LLM知道如何回答基本問題並得出有用的推論、假設和預測。

這種方法並不完美,因為LLM模型還不是為即時設計的,在確定完整的上下文範圍以解決所有可觀測性難題方面也不夠準確。然而,與人類在合理的時間內理解和建立大量機器生成的數據的上下文相比,首先用LLM建立一個基線,了解發生了什麼並獲得有益的建議要容易得多。

因此,LLM對解決可觀測性問題非常相關。它們旨在用於基於文本的系統,以及分析和提供見解。這可以透過整合輕鬆地應用於可觀測性,以提供有意義的建議。

重寫後的內容是:我們認為,在這個領域中,LLM的最大價值之一是更好地支持那些可能沒有很高技術熟練度的從業者,並使他們能夠處理大量複雜的數據問題。大多數需要解決的生產問題都有足夠的時間讓LLM根據歷史情境資料提供協助。透過這種方式,LLM可以使可觀測性更簡單、更經濟高效

同時,儘管人工智慧在可觀測性方面正在變得日益強大,但未來還有更有趣、更具顛覆性的機會。接下來的是可以用自然語言書寫和調查的LLM,而不是晦澀難懂的查詢語言——這對所有級別的用戶來說都是巨大的福音,但對那些比較缺乏實踐經驗的人尤其如此,包括業務部門的管理人員。

現在,使用者不再需要成為所有相關資訊的專家,他們可以編寫與常見參數相關的查詢,並使用業務部門主管使用的自然語言,而不僅僅是生產工程師。這使得廣泛的新流程和利益相關者都能夠獲得可觀測性,而不僅僅是生產工程師

在Logz.io,我們已經開始與LLM集成,並且正在努力在平台上開發令人興奮的新功能,旨在充分利用這些新興的人工智慧能力。我們相信,這將為那些面對大數據挑戰並尋求必要的可觀測性的組織帶來關鍵的創新。儘管市場上仍然存在著成本和複雜性的緊迫問題,但我們相信這給每個人帶來了許多保持樂觀的理由

以上是如何提高人工智慧的可觀測性?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
烹飪創新:人工智能如何改變食品服務烹飪創新:人工智能如何改變食品服務Apr 12, 2025 pm 12:09 PM

AI增強食物準備 在新生的使用中,AI系統越來越多地用於食品製備中。 AI驅動的機器人在廚房中用於自動化食物準備任務,例如翻轉漢堡,製作披薩或組裝SA

Python名稱空間和可變範圍的綜合指南Python名稱空間和可變範圍的綜合指南Apr 12, 2025 pm 12:00 PM

介紹 了解Python函數中變量的名稱空間,範圍和行為對於有效編寫和避免運行時錯誤或異常至關重要。在本文中,我們將研究各種ASP

視覺語言模型(VLMS)的綜合指南視覺語言模型(VLMS)的綜合指南Apr 12, 2025 am 11:58 AM

介紹 想像一下,穿過​​美術館,周圍是生動的繪畫和雕塑。現在,如果您可以向每一部分提出一個問題並獲得有意義的答案,該怎麼辦?您可能會問:“您在講什麼故事?

聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容聯發科技與kompanio Ultra和Dimenty 9400增強優質陣容Apr 12, 2025 am 11:52 AM

繼續使用產品節奏,本月,Mediatek發表了一系列公告,包括新的Kompanio Ultra和Dimenty 9400。這些產品填補了Mediatek業務中更傳統的部分,其中包括智能手機的芯片

本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢本週在AI:沃爾瑪在時尚趨勢之前設定了時尚趨勢Apr 12, 2025 am 11:51 AM

#1 Google推出了Agent2Agent 故事:現在是星期一早上。作為AI驅動的招聘人員,您更聰明,而不是更努力。您在手機上登錄公司的儀表板。它告訴您三個關鍵角色已被採購,審查和計劃的FO

生成的AI遇到心理摩托車生成的AI遇到心理摩托車Apr 12, 2025 am 11:50 AM

我猜你一定是。 我們似乎都知道,心理障礙由各種chat不休,這些chat不休,這些chat不休,混合了各種心理術語,並且常常是難以理解的或完全荒謬的。您需要做的一切才能噴出fo

原型:科學家將紙變成塑料原型:科學家將紙變成塑料Apr 12, 2025 am 11:49 AM

根據本週發表的一項新研究,只有在2022年製造的塑料中,只有9.5%的塑料是由回收材料製成的。同時,塑料在垃圾填埋場和生態系統中繼續堆積。 但是有幫助。一支恩金團隊

AI分析師的崛起:為什麼這可能是AI革命中最重要的工作AI分析師的崛起:為什麼這可能是AI革命中最重要的工作Apr 12, 2025 am 11:41 AM

我最近與領先的企業分析平台Alteryx首席執行官安迪·麥克米倫(Andy Macmillan)的對話強調了這一在AI革命中的關鍵但不足的作用。正如Macmillan所解釋的那樣,原始業務數據與AI-Ready Informat之間的差距

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。