電子計算機於上世紀40年代誕生,而在電腦出現後的10年內,人類歷史上的第一個AI應用就出現了。
AI模型已經發展了70多年,現在不僅可以創作詩歌,還能根據文字提示生成圖像,甚至幫助人類發現未知的蛋白質結構
在如此短的時間內,AI技術取得了指數級的成長,這是由於什麼原因呢?
一張來自「我們資料中的世界」(Our World in Data)的長圖,透過用於訓練AI模型的算力變化為刻度,對AI發展歷史進行了追溯。
高畫質大圖:https://www.visualcapitalist.com/wp-content/uploads/ 2023/09/01.-CP_AI-Computation-History_Full-Sized.html 需要重寫的內容是:高畫質大圖連結:https://www.visualcapitalist.com/wp-content/uploads/2023/09/01.-CP_AI-Computation-History_Full-Sized.html
該資料的來源是一篇由麻省理工學院等大學的研究人員發表的論文
論文連結: https://arxiv.org/pdf/2202.05924.pdf
除了論文之外,還有一個研究團隊根據這篇論文的數據製作了一個可視化的表格。使用者可以隨意縮放圖表,以獲取更詳細的數據
#需要重寫的內容是:表格位址:https://epochai.org /blog/compute-trends#compute-trends-are-slower-than-previously-reported
圖表的作者主要透過計算運算次數以及GPU時間來估計訓練每個模型的計算量,而對於選擇哪一個模型作為重要模型的代表,作者主要透過3個性質來確定:
顯著的重要性:某個系統具有重大歷史影響,顯著提高了SOTA,或被引用次數超過1000次。
相關性:作者只收錄了包含實驗結果和關鍵機器學習組成部分的論文,並且論文目標是推動現有SOTA發展。
獨特性:如果有另一篇更有影響力的論文描述了同一個系統,那麼論文將被從作者的資料集中剔除
#AI發展的三個時代
在1950年代,美國的數學家克勞德·香農訓練了一隻名為Theseus的機器老鼠,使其能夠在迷宮中導航並記住路徑。這是人工學習的第一個實例
Theseus的建構是基於40個浮點運算(FLOPs)。 FLOPs通常用作衡量電腦硬體運算效能的指標。 FLOP數量越高,運算能力越強,系統也越強大。
AI的進步取決於三個關鍵要素:運算能力、可用的訓練資料和演算法。在AI發展的早期幾十年中,計算能力的需求按照摩爾定律不斷增長,也就是說計算能力大約每20個月翻倍一次
##然而,當2012年AlexNet(一種影像辨識人工智慧)的出現標誌著深度學習時代的開始時,這個翻倍時間大大縮短到了六個月,這是因為研究人員在計算和處理器方面的投資增加了
隨著2015年AlphaGo的出現——一個擊敗了人類職業圍棋選手的電腦程式——研究人員發現了第三個時代:大規模AI模型時代到來了,它的運算需求比以前所有的AI系統都要大。
未來AI技術的進展回顧過去的十年,運算能力的成長速度簡直令人難以置信 #
例如,用於訓練Minerva(一個可以解決複雜數學問題的AI)的運算能力幾乎是十年前用於訓練AlexNet的600萬倍。
這種運算成長,加上大量可用的資料集和更好的演算法,令AI在極短的時間內取得了大量進展。如今,AI不僅能達到人的表現水平,甚至在許多領域都超越了人類。
AI能力將在各個層面不斷超越人類
#從上圖可以清楚看出,人工智慧在許多領域已經超越了人類的表現,並且在其他方面也將很快超越人類的表現。
下圖展示了在常見的人類日常工作和生活會使用到的能力中,AI在哪一年已經達到或超過了人類水平。
AI技術發展勢能充足
計算成長是否能夠維持相同的速度是難以確定的。大規模模型的訓練需要越來越多的算力,如果算力供應無法持續成長,可能會減緩人工智慧技術的發展進程
同樣,耗盡目前可用於訓練AI模型的所有數據也可能妨礙新模型的開發和實施。
2023年,AI產業迎來了大量資本的湧入,尤其是以大語言模型為代表的生成式AI。這或許預示著更多的突破即將到來,似乎以上3個促進AI技術發展的元素都將在未來得到進一步的優化和發展
2023年上半年,AI產業的新創公司融資規模達到了140億美元,甚至比過去4年獲得的融資總和還要多。
而大量(78%)的生成式AI新創公司都還處於發展非常早期的階段,甚至27%的生成式AI新創公司公司還沒有進行融資。
360多家生成式人工智慧公司,27% 尚未進行融資。超過一半是 輪或更早的項目,說明整個生成式AI產業還屬於非常早期的階段。
由於開發大型語言模型的資本密集型性質,自2022 年第三季以來,生成式AI基礎設施類別已獲得超過70 % 的資金,僅佔所有生成式AI交易量的10%。大部分資金源自於投資者對基礎模型和API、MLOps(機器學習操作)以及向量資料庫技術等新興基礎設施的興趣。
以上是AI技術指數級爆發:70年間算力成長6.8億倍,3個歷史階段見證的詳細內容。更多資訊請關注PHP中文網其他相關文章!

介紹 恭喜!您經營一家成功的業務。通過您的網頁,社交媒體活動,網絡研討會,會議,免費資源和其他來源,您每天收集5000個電子郵件ID。下一個明顯的步驟是

介紹 在當今快節奏的軟件開發環境中,確保最佳應用程序性能至關重要。監視實時指標,例如響應時間,錯誤率和資源利用率可以幫助MAIN

“您有幾個用戶?”他扮演。 阿爾特曼回答說:“我認為我們上次說的是每週5億個活躍者,而且它正在迅速增長。” “你告訴我,就像在短短幾週內翻了一番,”安德森繼續說道。 “我說那個私人

介紹 Mistral發布了其第一個多模式模型,即Pixtral-12b-2409。該模型建立在Mistral的120億參數Nemo 12B之上。是什麼設置了該模型?現在可以拍攝圖像和Tex

想像一下,擁有一個由AI驅動的助手,不僅可以響應您的查詢,還可以自主收集信息,執行任務甚至處理多種類型的數據(TEXT,圖像和代碼)。聽起來有未來派?在這個a


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver CS6
視覺化網頁開發工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。