異常是指與預期模式的偏差,可能發生在多種環境中—無論是在銀行交易、工業營運、行銷產業或醫療保健監控中。傳統的檢測方法通常會產生很高的誤報率。誤報是指系統錯誤地將常規事件識別為異常事件,從而導致不必要的調查工作和操作延遲。這種低效率是一個緊迫的問題,因為它會耗盡資源並轉移對需要解決的真正問題的注意力。本文深入研究了一種廣泛使用基於規則的引擎的異常檢測專用方法。此方法透過交叉引用多個關鍵績效指標 ( KPI)來提高識別違規行為的準確性)。這種方法不僅可以更有效地驗證或反駁異常的存在,有時還可以隔離和識別問題的根本原因。
系統架構概述
資料流
#這是引擎審查的連續資料流。該流中的每個點可能與一個或多個 KPI 相關,規則引擎使用這些 KPI 來根據其訓練規則集進行評估。持續的資料流對於即時監控至關重要,為引擎提供了必要的工作資訊。
規則引擎架構
系統的核心是規則引擎,需要對其進行培訓以了解其將監控的 KPI 的細微差別。這就是一組 KPI 規則發揮作用的地方。這些規則充當引擎的演算法基礎,旨在將兩個或多個 KPI 關聯在一起。
KPI 規則的類型:
- #資料品質:專注於資料流的一致性、準確性和可靠性的規則。
- KPI 相關性:著重於某些KPI 相關性的規則
規則申請流程
收到資料後,引擎立即尋找傳入KPI 中的偏差或異常。這裡的異常是指任何超出預定可接受範圍的指標。引擎標記這些異常以供進一步調查,可分為三個主要操作:接受、拒絕和縮小範圍。這可能涉及將一個 KPI 與另一個 KPI 相關聯,以驗證或否定檢測到的異常。
方法
規則形成
基本步驟涉及建立一系列將多個KPI 相互關聯的規則。例如,規則可能會將產品品質指標與工廠設定中的生產速度相關聯。例如:
- KPI 之間的直接關係:兩個KPI 之間的「直接關係」意味著當一個KPI 增加時,另一個KPI 也會增加,或者當一個KPI 減少時,另一個也會減少。例如,在零售業務中,廣告支出 (KPI1) 的增加可能與銷售收入 (KPI2) 的增加直接相關。在這種情況下,其中一個方面的增加會對另一個方面產生正面影響。這些知識對企業來說非常寶貴,因為它有助於策略規劃和資源分配。
- KPI 之間的反向關係:另一方面,「反向關係」是指當一個 KPI 上升時,另一個 KPI 下降,反之亦然。例如,在製造環境中,生產產品所需的時間 (KPI1) 可能與生產效率 (KPI2) 成反比關係。隨著生產時間的減少,生產效率可能會提高。了解逆關係對於業務優化也至關重要,因為它可能需要採取平衡措施來優化兩個 KPI。
- 組合 KPI 來製定新規則:有時,組合兩個或多個 KPI 來創建一個新指標可能會有益,該指標可以提供有關業務績效的寶貴見解。例如,將「客戶終身價值」(KPI1) 和「客戶獲取成本」(KPI2) 結合起來可以得出第三個 KPI:「客戶價值與成本比率」。這個新的 KPI 可以更全面地了解獲取新客戶的成本是否與其隨著時間的推移帶來的價值相符。
訓練規則引擎
#規則引擎經過全面的訓練,可以即時有效地應用這些規則。
即時審查
規則引擎主動監控傳入數據,應用其經過訓練的規則來識別異常或潛在異常。
決策
在識別潛在例外時,引擎:
- 接受異常:確認階段: 標記異常後,引擎將使用其預先訓練的 KPI 規則將其與其他關聯的 KPI 進行比較。這裡的重點是確定異常是否確實是一個問題或只是異常值。此確認是根據主要 KPI 和次要 KPI 之間的相關性完成的。
- 拒絕異常: 誤訊階段: 並非所有異常都表示有問題;有些可能是統計異常值或資料錯誤。在這種情況下,引擎利用其訓練來拒絕異常,本質上將其識別為誤報。這對於消除不必要的警報疲勞以及將資源集中在真正的問題上至關重要。
- 縮小異常範圍:細化階段:有時,異常可能是影響多個元件的更大問題的一部分。在這裡,引擎透過將問題範圍縮小到特定的 KPI 組件,進一步找出問題的確切性質。這種高級過濾有助於快速識別問題並解決根本原因。
優點
- #減少誤報:透過使用交叉引用多個KPI的規則引擎,系統大大降低了誤報的發生率。
- 時間和成本效率:偵測和解決異常的速度得到提高,從而減少了營運時間和相關成本。
- 提高準確性:比較和對比多個 KPI 的能力可以更細緻、更準確地表示異常事件。
結論
本文概述了使用經過各種 KPI 規則集訓練的規則引擎進行異常檢測的方法。與通常僅依賴統計演算法或機器學習模型的傳統異常檢測系統相比,這種方法採用了專門的規則引擎作為其基石。透過更深入研究不同 KPI 之間的關係和交互,企業可以獲得簡單、獨立指標無法提供的更細緻的見解。這可以實現更穩健的策略規劃、更好的風險管理以及實現業務目標的整體更有效的方法。一旦異常被標記,引擎就會使用其預先訓練的 KPI 規則將其與其他關聯的 KPI 進行比較。這裡的重點是確定異常是否確實是一個問題或只是異常值。
以上是異常檢測:利用規則引擎最大限度地減少誤報的詳細內容。更多資訊請關注PHP中文網其他相關文章!

如何用PHP实现异常检测与欺诈分析摘要:随着电子商务的发展,欺诈成为一个不可忽视的问题。本文介绍了如何用PHP实现异常检测与欺诈分析。通过收集用户交易数据和行为数据,结合机器学习算法,在系统中实时监测和分析用户行为,识别潜在的欺诈行为,并采取相应措施应对。关键词:PHP、异常检测、欺诈分析、机器学习一、引言随着电子商务的快速发展,人们在互联网上进行交易的数量

Nginx是一款自由、开源、高性能、轻量级的HTTP服务器软件,在互联网中广泛应用。但是,由于Nginx经常面向公网,承担着重要的Web服务,因此需要定期对其进行安全性能监控与异常检测,以及及时采取有效的安全措施,以保证网站的正常运行和数据的安全。一、Nginx的安全性能监控Nginx的安全性能监控主要包括以下几个方面:(一)Nginx的访问日志监控Ngin

Python是一种高级编程语言,它是一种简单易学、功能强大的语言,由于其易读性强且代码量少、易维护,被广泛应用于科学计算和数据分析、人工智能等领域。然而,任何编程语言都会遇到错误和异常情况,因此,Python也提供了一种异常机制,让开发者可以更好的处理这些情况。本文将介绍如何在Python中使用异常检测机制,并给出一些实例。一、Python中的异常类型在Py

随着互联网和大数据时代的到来,MySQL数据库作为一种常用的开源数据库管理系统,被越来越多的公司和组织所采用。但是,在实际的应用过程中,MySQL数据库也会出现各种各样的错误和异常,如系统崩溃、查询超时、死锁等。这些异常对系统的稳定性和数据的完整性会造成严重的影响,因此,快速检测和分析MySQL的错误和异常是一项非常重要的工作。日志监控是MySQL的重要功能

如何在Python中进行数据可靠性验证和模型评估的最佳实践和算法选择引言:在机器学习和数据分析领域,验证数据的可靠性和评估模型的性能是非常重要的工作。通过验证数据的可靠性,可以保证数据的质量和准确性,从而提高模型的预测能力。而对模型进行评估,则可以帮助我们选择最优模型并确定它们的性能。本文将介绍在Python中进行数据可靠性验证和模型评估的最佳实践和算法选择

基于时间序列的异常检测问题,需要具体代码示例时间序列数据是在时间上按照一定的顺序记录的数据,例如股票价格、气温变化、交通流量等。在实际应用中,对于时间序列数据的异常检测具有重要的意义。异常值可以是与正常数据不一致的极端值、噪声、错误数据,或者是某种特定情况下的突发事件。异常检测能够帮助我们发现这些异常情况,从而采取相应的措施。针对时间序列的异常检测问题,常用

Python已成为数据科学家和分析师的首选语言,提供全面的数据分析库和工具。尤其是Python在时间序列分析方面表现突出,在预测和异常检测方面表现出色。凭借其简单性、多功能性以及对统计和机器学习技术的强大支持,Python提供了一个理想的平台,用于从依赖时间的数据中提取有价值的见解。本文探讨了Python在时间序列分析方面的卓越功能,重点关注预测和异常检测。通过深入研究这些任务的实际方面,我们重点介绍了Python的库和工具如何实现精确预测和识别时间序列数据中的异常。通过现实世界的示例和演示性输

如何实现C#中的异常检测算法,需要具体代码示例引言:在C#编程中,异常处理是非常重要的一部分。当程序发生错误或意外情况时,异常处理机制能够帮助我们优雅地处理这些错误,以保证程序的稳定性和可靠性。本文将详细介绍如何在C#中实现异常检测算法,并给出具体的代码示例。一、异常处理基础知识异常的定义和分类异常是程序在运行时遇到的错误或意外情况,破坏了程序的正常执行流程


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Dreamweaver CS6
視覺化網頁開發工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

WebStorm Mac版
好用的JavaScript開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。