PHP速学视频免费教程(入门到精通)
PHP怎么学习?PHP怎么入门?PHP在哪学?PHP怎么学才快?不用担心,这里为大家提供了PHP速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!
前面的文章了不起给大家介绍了 langchain 的一些基本知识,没看过的小伙伴可以点击这里去看下,今天了不起给大家介绍一下 langchain 的第一个很重要的组件模型 model。
注意这里说的模型是指 LangChain 的模型组件,而不是指类似于 OpenAI 的语言模型,之所以 LangChain 会出现模型组件就是因为业内的语言模型太多了,除了 OpenAI 这家公司的语言模型之外,还很有很多其他家的。
LangChain 的模型组件有三种类型,分别是 LLM 大语言模型,Chat Model 聊天模型和文本嵌入模型 Text Embedding Models。
LLM 作为最基本的一种模型组件,输入和输出都只支持字符串,在大部分的场景下就可以满足我们的需求了。我们可以在 Colab([https://colab.research.google.com) 上面直接写 Python 代码
下面是一个 case,先安装依赖,再执行下面的代码。
pip install openaipip install langchain
import os# 配置OpenAI 的 API KEYos.environ["OPENAI_API_KEY"] ="sk-xxx"# 从 LangChain 中导入 OpenAI 的模型from langchain.llms import OpenAI# 三个参数分别代表OpenAI 的模型名称,执行的次数和随机性,数值越大越发散llm = OpenAI(model_name="text-davinci-003", n=2, temperature=0.3)llm.generate(["给我讲一个故事", "给我讲一个笑话"])
运行的结果如下
Chat Model 是基于 LLM 模型的,只不过 Chat Model 相对于 LLM 模型组件间输入和输出更加结构化,输入和输出的参数的类型都是 Chat Model,而不是简单的字符串。常用的 Chat Model 类型有如下几种
from langchain.chat_models import ChatOpenAIfrom langchain.schema import (AIMessage,HumanMessage,SystemMessage)chat = ChatOpenAI(temperature=0)messages = [SystemMessage(cnotallow="返回的数据markdown 语法进行展示,代码使用代码块包裹"),HumanMessage(cnotallow="用 Java 实现一个二分查找算法")]print(chat(messages))
生成的内容字符串形式如下
折半查找算法是一种用于在有序数组中查找特定元素的搜索算法,也称为二分查找算法。该算法的时间复杂度为 O(log n)。\n\n以下是 Java 实现二分查找算法的代码:\n\njava\npublic class BinarySearch {\n public static int binarySearch(int[] arr, int target) {\n int left = 0;\n int right = arr.length - 1;\n while (left
将 content 里面的内容提取出来,用 markdown 语法展示出来是这样的
使用这个模型组件,可以进行一些角色的预设,然后来定制个性化的问答。
from langchain.chat_models import ChatOpenAIfrom langchain.prompts import (ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,)from langchain.schema import (AIMessage,HumanMessage,SystemMessage)system_template="你是一个把{input_language}翻译成{output_language}的助手"system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)human_template="{text}"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])messages = chat_prompt.format_prompt(input_language="英语", output_language="汉语", text="I love programming.")print(messages)chat = ChatOpenAI(temperature=0)print(chat(messages.to_messages()))
output
messages=[SystemMessage(cnotallow='你是一个把英语翻译成汉语的助手', additional_kwargs={}), HumanMessage(cnotallow='I love programming.', additional_kwargs={}, example=False)] cnotallow='我喜欢编程。example=False, additional_kwargs={}
文本嵌入模型组件相对比较难理解,这个组件接收的是一个字符串,返回的是一个浮点数的列表。在 NLP 领域中 Embedding 是一个很常用的技术,Embedding 是将高维特征压缩成低维特征的一种方法,常用于自然语言处理任务中,如文本分类、机器翻译、推荐系统等。它将文本中的离散数据如单词、短语、句子等,映射为实数向量,以更好地进行神经网络处理和学习。通过 Embedding,文本数据可以被更好地表示和理解,提高了模型的表现力和泛化能力。
from langchain.embeddings import OpenAIEmbeddingsembeddings = OpenAIEmbeddings()text = "hello world"query_result = embeddings.embed_query(text)doc_result = embeddings.embed_documents([text])print(query_result)print(doc_result)
output
[-0.01491016335785389, 0.0013780705630779266, -0.018519161269068718, -0.031111136078834534, -0.02430146001279354, 0.007488010451197624,0.011340680532157421, 此处省略 .......
今天给大家介绍了一下 LangChain 的模型组件,有了模型组件我们就可以更加方便的跟各种 LLMs 进行交互了。
官方文档:https://python.langchain.com/en/latest/modules/models.html
Java免费学习笔记:立即学习
解锁 Java 大师之旅:从入门到精通的终极指南
已抢7564个
抢已抢97288个
抢已抢15246个
抢已抢53888个
抢已抢198200个
抢已抢88295个
抢