譯者| 陳峻
審校| 孫淑娟
人工智慧(Artificial intelligence,AI)已經面世幾十年了,但直到最近,這項技術才被廣泛地應用於諸如協助企業識別潛在客戶,以及識別環境中的危險物體等場景中。特別是以人工智慧驅動的物體偵測領域,它從根本上提升了傳統閉路電視(CCTV)監視攝影機的能力。
目前,憑藉著物件辨識軟體,AI相機已經可以辨識到在其面前出現的人臉、以及各種物件。這對於真實的安保使用場景,有著極為實用的創新意義。
什麼是AI攝影機?
首先,讓我們來釐清一個概念:AI攝影機並不是一種可以用來拍攝視覺影像、或製作影片的新設備,而是與傳統攝影機非常相似的、可以利用電腦視覺等技術,從可視化資料中「學習」到實用資訊的視覺處理設備。
利用機器學習演算法,AI相機可以流暢地處理視覺影像中的各種資訊。例如其中的一個典型用途便是,AI相機能夠使用感測器來分析影像,並確定捕捉影像的最佳設定。
近年來,物件偵測已經被廣泛地應用到了許多垂直領域。例如,在某些行業,有些公司會依靠AI攝影機進行臉部辨識、車輛偵測以及其他語意物件的偵測。
在某些特殊場景中(如建築工地),AI攝影機也能夠通過安全協議,及時檢測到施工人員是否已穿戴了基本的安全防護裝備;或者是否有高空物體正在落向人員的頭部。
此外,透過監控員工的行為,AI攝影機也能夠判斷員工在工作時,是否距離危險物質過近,是否對安全威脅警告熟視無睹。在這種即時危險偵測的基礎上,AI攝影機還能夠利用聲光電等方式,提醒現場人員正在發生的異常情況,或是通知到後台,趕在事故發生之前,挽救生命,並避免高昂的糾錯代價。
AI相機偵測物體的工作原理
物件偵測涉及透過某種演算法,來處理攝影機擷取到的影像數據,並將其與資料庫中的已知物體進行比較。接著,演算法會辨識出那些與資料庫中已存對象相似的對象,並傳回結果。例如,那些專被用來偵測人臉的AI鏡頭,可以主動辨識人物或其他物體,即使他們的部分特徵被遮蔽或無法辨識。 AI攝影機將其捕捉到的影像,與後端資料庫中儲存的大量人臉資訊進行比較,檢索那些可能匹配上的臉部特徵。
同時,在獲取明確同意的前提下,這些攝影機還可以透過臉部辨識技術,使雇主能夠更有效地追蹤員工的出勤率,並監控員工在工作場所的行為。
訓練AI攝影機偵測特定物體
和其他AI賦能的工具(AI-powered tool)類似,AI攝影機必須經過大量資料集的訓練,例如在接受了數十萬張汽車影像的判斷後,才能較為有效、準確地偵測出特定的車輛。
可見,我們首先需要訓練AI攝影機收集各種有待偵測的物體的影像。在此階段,我們應做到“韓信點兵,多多益善”,即展示包括不同視角、光照條件、顏色、以及不同拍攝角度的圖像。只有「餵給」 攝影機的影像越豐富,它們才能夠反覆地訓練判斷能力。透過不斷累積正確的特徵,以及剔除不相關的干擾因素,它們在現實世界中,才能做出準確的辨識。
從實作技術上說,您可以使用TensorFlow Lite或PyTorch等開源函式庫,來訓練自己為AI相機系統開發的偵測特定物件的演算法。整個過程包括編寫程式碼,呼叫演算法去接收圖像或視頻,並輸出與其中內容相對應的標籤。
使用AI相機進行物體偵測的優勢
雖然添置AI攝影機會為企業帶來一定的成本開支,但是相對於它帶來的好處而言,許多行業還是樂於接受和啟用的。下面,我將以D-Link系列AI相機為例,和您討論它們在真實使用場景中的四大優勢。
1. 更快的偵測時間
傳統的相機系統在偵測物件方面往往捕捉速度緩慢、且不可靠,通常還需要依靠人眼觀察,才能精確地定位物體。而AI相機則是針對快速、準確地偵測物體而設計製造的。隨著現今AI技術的快速更新與迭代,AI攝影機在偵測時間上大幅縮短。特別是對於諸如建築工地或公共道路之類的快節奏環境,這種關鍵性的提升顯得尤為重要。
2. 更高的準確度
與傳統相機系統相比,物件偵測相機在辨識精準度上也提升了不少。這在一定程度上要歸功於它們能夠從多個角度與距離,去辨識物體的能力。即使某些看起來大小或形狀相似的物體,相機也能夠區分出它們類型的不同。這類特性讓它們更適合諸如:安全監控、以及庫存管理等精細的應用場景,也能體現出人工智慧的特性。
3. 更節省成本
同樣,與傳統攝影機相比,物體偵測攝影機具有更高的精度、以及更快的偵測效率,本身就體現了時間成本的節省。企業透過預先投資建立AI賦能的系統,可以避免由於傳統系統的不準確或緩慢的結果,所導致的高昂的錯誤代價與錯失機會。而且,這些系統往往需要更少的人工維護,甚至不需要定期進行手動校準。因此,從長遠來看,AI攝影機的確能夠節省企業的資金投入。
4. 更高的可擴展性
由於部署與實施的便利性,AI攝影機能夠在不增加資源負擔的前提下,迅速實現監控能力上的擴展與延伸。此外,過去的人工識別方法,需要幾名操作員持續盯著螢幕分析和解讀他們在圖像中看到的事物。而AI攝影機則提供了更可靠的結果,避免了人工在工作單調乏味時,可能出現的識別錯誤。
小結
綜上所述,人工智慧透過重新定義傳統識別與監控技術,在各個物件偵測領域正在發揮關鍵性的作用,甚至能夠起到挽救生命的效果。當然,AI技術的實際應用場景,遠不止於此。從客戶聊天機器人,到內容的採編,以及時下流行的AI繪畫,人工智慧都在和我們的生活持續發生強連結。
譯者介紹
陳峻(Julian Chen),51CTO社群編輯,具有十多年的IT專案實施經驗,善於對內外部資源與風險實施管控,專注傳播網路與資訊安全知識與經驗。
原文標題:#How AI Cameras Detect Objects and Recognize Faces#,作者:KARIM AHMAD
#
以上是AI相機如何偵測物體和辨識人臉的詳細內容。更多資訊請關注PHP中文網其他相關文章!

由於AI的快速整合而加劇了工作場所的迅速危機危機,要求戰略轉變以外的增量調整。 WTI的調查結果強調了這一點:68%的員工在工作量上掙扎,導致BUR

約翰·塞爾(John Searle)的中國房間論點:對AI理解的挑戰 Searle的思想實驗直接質疑人工智能是否可以真正理解語言或具有真正意識。 想像一個人,對下巴一無所知

與西方同行相比,中國的科技巨頭在AI開發方面的課程不同。 他們不專注於技術基準和API集成,而是優先考慮“屏幕感知” AI助手 - AI T

MCP:賦能AI系統訪問外部工具 模型上下文協議(MCP)讓AI應用能夠通過標準化接口與外部工具和數據源交互。由Anthropic開發並得到主要AI提供商的支持,MCP允許語言模型和智能體發現可用工具並使用合適的參數調用它們。然而,實施MCP服務器存在一些挑戰,包括環境衝突、安全漏洞以及跨平台行為不一致。 Forbes文章《Anthropic的模型上下文協議是AI智能體發展的一大步》作者:Janakiram MSVDocker通過容器化解決了這些問題。基於Docker Hub基礎設施構建的Doc

有遠見的企業家採用的六種策略,他們利用尖端技術和精明的商業敏銳度來創造高利潤的可擴展公司,同時保持控制。本指南是針對有抱負的企業家的,旨在建立一個

Google Photos的新型Ultra HDR工具:改變圖像增強的遊戲規則 Google Photos推出了一個功能強大的Ultra HDR轉換工具,將標準照片轉換為充滿活力的高動態範圍圖像。這種增強功能受益於攝影師

技術架構解決了新興的身份驗證挑戰 代理身份集線器解決了許多組織僅在開始AI代理實施後發現的問題,即傳統身份驗證方法不是為機器設計的

(注意:Google是我公司的諮詢客戶,Moor Insights&Strateging。) AI:從實驗到企業基金會 Google Cloud Next 2025展示了AI從實驗功能到企業技術的核心組成部分的演變,


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3 Linux新版
SublimeText3 Linux最新版

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。