大型、敏感的資料集經常被用於訓練AI模型,從而產生隱私和資料外洩風險。人工智慧的使用增加了組織的威脅向量,並擴大了其攻擊面。人工智慧進一步為良性錯誤創造了新的機會,對模式和業務結果產生不利影響。
不了解的風險無法減輕。 Gartner最近對首席資訊安全長的一項調查顯示,大多數組織沒有考慮到人工智慧帶來的新的安全和業務風險,或者他們必須採取新的控制措施來降低這些風險。人工智慧需要新型風險和安全管理措施以及緩解框架。
以下是安全與風險領導者應該關注的五大優先事項,以有效管理其組織內的人工智慧風險和安全:
1、捕捉AI暴露程度
機器學習模型對大多數使用者來說是不透明的,並且與一般的軟體系統不同,它們的內部工作原理甚至連最熟練的專家都不知道。資料科學家和模型開發人員通常理解他們的機器學習模型試圖做什麼,但他們不能總是破解模型處理資料的內部結構或演算法手段。
這種理解能力的缺乏嚴重限制了組織管理AI風險的能力。人工智慧風險管理的第一步是列出組織中使用的所有人工智慧模型,無論它們是第三方軟體的元件、內部開發或透過軟體即服務應用程式存取。這應該包括識別各種模型之間的相互依賴關係。然後根據營運影響對模型進行排序,並考慮到風險管理控制可以根據確定的優先順序逐步應用。
一旦模型被列出,下一步就是使它們盡可能的可解釋或可解釋性。 「可解釋性」意味著產生細節、原因或解釋的能力,為特定的受眾闡明模型的功能。這將為風險和安全管理者提供管理和減輕由模型結果帶來的業務、社會、責任和安全風險的環境。
2、透過人工智慧風險教育活動提高員工意識
員工意識是人工智慧風險管理的一個重要組成部分。首先,讓所有參與者,包括CISO、首席隱私官、首席資料長以及法律和合規官,重新調整他們對AI的心態。他們應該明白,人工智慧「不像任何其他應用」——它會帶來獨特的風險,需要特定的控制來減輕此類風險。然後,與業務利益相關者聯繫,以擴大對需要管理的AI風險的認識。
與這些利害關係人一起,確定跨團隊和隨著時間的推移建立AI知識的最佳方式。例如,看看是否可以在企業的學習管理系統中新增一門關於基本AI概念的課程。與應用程式和資料安全部門合作,幫助在所有組織成員中培養AI知識。
3、透過隱私計畫消除人工智慧資料暴露
#根據Gartner最近的一項調查,隱私和安全性一直被視為人工智能實現的主要障礙。採用資料保護和隱私程序可以有效消除AI內部和共享資料的暴露。
有一系列方法可以用於存取和共享基本數據,同時仍然滿足隱私和數據保護要求。確定哪種資料隱私技術或技術組合,對組織的特定用例最有意義。例如,調查諸如資料屏蔽、合成資料生成或差分隱私等技術。
在向外部組織匯出或匯入資料時,應滿足資料隱私要求。在這些場景中,像是完全同態加密和安全多方運算等技術,應該比保護資料不受內部使用者和資料科學家的影響更有用。
4、將風險管理納入模型運作
AI模型需要特殊用途的流程作為模型操作或ModelOps的一部分,以使人工智能可靠且高效。隨著環境因素的不斷變化,AI模型必須持續監測業務價值洩漏和不可預測的(有時是不利的)結果。
有效的監控需要對AI模型的理解。專門的風險管理流程必須成為ModelOps的一個組成部分,以使AI更值得信任、準確、公平,並對對抗性攻擊或良性錯誤更有彈性。
控制措施應該持續應用-例如,貫穿模型開發、測試和部署以及持續營運的整個過程。有效的控制將檢測到惡意行為、良性錯誤和AI數據或模型的意外變化,這些變化會導致不公平、損壞、不準確、模型性能和預測不佳,以及其他意想不到的後果。
5、採用人工智慧安全措施來應對對抗性攻擊
#偵測並阻止對人工智慧的攻擊需要新的技術。對AI的惡意攻擊可能導致重大的組織損害和損失,包括財務、聲譽或與智慧財產權、敏感客戶資料或專有資料相關的資料。與安全部門合作的應用程式負責人必須在他們的AI應用程式中添加控制,以檢測異常資料輸入、惡意攻擊和良性輸入錯誤。
圍繞AI模型和資料實施一整套傳統的企業安全控制,以及針對AI的全新完整性措施,如容忍對抗性AI的訓練模型。最後,使用詐欺、異常檢測和機器人檢測技術,防止AI資料中毒或輸入錯誤檢測。
以上是如何管理人工智慧風險和安全?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

由於AI的快速整合而加劇了工作場所的迅速危機危機,要求戰略轉變以外的增量調整。 WTI的調查結果強調了這一點:68%的員工在工作量上掙扎,導致BUR

約翰·塞爾(John Searle)的中國房間論點:對AI理解的挑戰 Searle的思想實驗直接質疑人工智能是否可以真正理解語言或具有真正意識。 想像一個人,對下巴一無所知

與西方同行相比,中國的科技巨頭在AI開發方面的課程不同。 他們不專注於技術基準和API集成,而是優先考慮“屏幕感知” AI助手 - AI T

MCP:賦能AI系統訪問外部工具 模型上下文協議(MCP)讓AI應用能夠通過標準化接口與外部工具和數據源交互。由Anthropic開發並得到主要AI提供商的支持,MCP允許語言模型和智能體發現可用工具並使用合適的參數調用它們。然而,實施MCP服務器存在一些挑戰,包括環境衝突、安全漏洞以及跨平台行為不一致。 Forbes文章《Anthropic的模型上下文協議是AI智能體發展的一大步》作者:Janakiram MSVDocker通過容器化解決了這些問題。基於Docker Hub基礎設施構建的Doc

有遠見的企業家採用的六種策略,他們利用尖端技術和精明的商業敏銳度來創造高利潤的可擴展公司,同時保持控制。本指南是針對有抱負的企業家的,旨在建立一個

Google Photos的新型Ultra HDR工具:改變圖像增強的遊戲規則 Google Photos推出了一個功能強大的Ultra HDR轉換工具,將標準照片轉換為充滿活力的高動態範圍圖像。這種增強功能受益於攝影師

技術架構解決了新興的身份驗證挑戰 代理身份集線器解決了許多組織僅在開始AI代理實施後發現的問題,即傳統身份驗證方法不是為機器設計的

(注意:Google是我公司的諮詢客戶,Moor Insights&Strateging。) AI:從實驗到企業基金會 Google Cloud Next 2025展示了AI從實驗功能到企業技術的核心組成部分的演變,


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

記事本++7.3.1
好用且免費的程式碼編輯器