搜尋
首頁科技週邊人工智慧機器學習:不要低估樹模型的威力

由於神經網路的複雜性,它們常常被認為是解決所有機器學習問題的「聖杯」。而另一方面,基於樹的方法並未得到同等重視,主要原因在於這類演算法看起來很簡單。然而,這兩種演算法看似不同,卻像一枚硬幣的正反面,都很重要。

機器學習:不要低估樹模型的威力

樹模型 VS 神經網路

基於樹的方法通常優於神經網路。本質上,將基於樹的方法和基於神經網路的方法放在同一個類別中是因為,它們都透過逐步解構來處理問題,而不是像支援向量機或Logistic 迴歸那樣​​透過複雜邊界來分割整個資料集。

很明顯,基於樹的方法沿著不同的特徵逐步分割特徵空間,以最佳化資訊增益。不那麼明顯的是,神經網路也以類似的方式處理任務。每個神經元監視特徵空間的一個特定部分(存在多種重疊)。當輸入進入該空間時,某些神經元就會被啟動。

神經網路以機率的視角看待這種逐段模型擬合 (piece-by-piece model fitting),而基於樹的方法則採用確定性的視角。不管怎樣,這兩者的表現都依賴模型的深度,因為它們的組件與特徵空間的各個部分有關聯。

包含太多組件的模型(對於樹模型而言是節點,對於神經網路則是神經元)會過度擬合,而組件太少的模型根本無法給出有意義的預測。 (二者一開始都是記憶資料點,而不是學習泛化。)

要想更直觀地了解神經網路是如何分割特徵空間的,可閱讀這篇介紹通用近似定理的文章:https://medium.com/analytics-vidhya/you-dont-understand-neural-networks-until-you-understand-the-universal-approximation-theory-85b3e7677126。

雖然決策樹有許多強大的變體,如隨機森林、梯度提升、AdaBoost 和深度森林,但一般來說,基於樹的方法本質上是神經網路的簡化版本。

基於樹的方法透過垂直線和水平線逐段解決問題,以最小化熵(優化器和損失)。神經網路透過激活函數來逐段解決問題。

基於樹的方法是確定性的,而不是機率性的。這帶來了一些不錯的簡化,例如自動特徵選擇。

決策樹中被活化的條件節點類似於神經網路中被活化的神經元(訊息流)。

神經網路透過擬合參數對輸入進行變換,間接指導後續神經元的活化。決策樹則明確地擬合參數來指導資訊流。 (這是確定性與機率性相對應的結果。)

機器學習:不要低估樹模型的威力

資訊在兩個模型中的流動相似,只是在樹模型中的流動方式更簡單。

樹模型的1 和0 選擇VS 神經網路的機率選擇

當然,這是一個抽象的結論,甚至可能是有爭議的。誠然,建立這種聯繫有許多障礙。不管怎樣,這是理解基於樹的方法何時以及為什麼優於神經網路的重要部分。

對於決策樹而言,處理表格或表格形式的結構化資料是很自然的。大多數人都同意用神經網路執行表格資料的迴歸和預測屬於大材小用,所以這裡做了一些簡化。選擇 1 和 0,而不是機率,是這兩種演算法之間差異的主要根源。因此,基於樹的方法可成功應用於不需要機率的情況,如結構化資料。

例如,基於樹的方法在 MNIST 資料集上表現出很好的效能,因為每個數字都有幾個基本特徵。不需要計算機率,這個問題也不是很複雜,這就是為什麼設計良好的樹集成模型性能可以媲美現代卷積神經網絡,甚至更好。

通常,人們傾向於說「基於樹的方法只是記住了規則」,這種說法是對的。神經網路也是一樣,只不過它能記住更複雜的、基於機率的規則。神經網路並非明確地對 x>3 這樣的條件給出真 / 假的預測,而是將輸入放大到很高的值,從而得到 sigmoid 值 1 或產生連續表達式。

另一方面,由於神經網路非常複雜,因此使用它們可以做很多事情。卷積層和循環層都是神經網路的傑出變體,因為它們處理的資料往往需要機率計算的細微差別。

很少有圖像可以用 1 和 0 建模。決策樹值不能處理具有許多中間值(例如0.5)的資料集,這就是為什麼它在MNIST 資料集上表現很好的原因,在MNIST 中,像素值幾乎都是黑色或白色,但其他資料集的像素值不是(例如ImageNet)。類似地,文本有太多的資訊和太多的異常,無法用確定性的術語來表達。

這也是神經網路主要用於這些領域的原因,也是神經網路研究在早期(21 世紀初之前)停滯不前的原因,當時無法獲得大量圖像和文字數據。神經網路的其他常見用途僅限於大規模預測,例如 YouTube 影片推薦演算法,其規模非常大,必須使用機率。

任何公司的資料科學團隊可能都會使用基於樹的模型,而不是神經網絡,除非他們正在建造一個重型應用,例如模糊 Zoom 影片的背景。但在日常業務分類任務上,基於樹的方法因其確定性特質,使這些任務變得輕量級,其方法與神經網路相同。

在許多實際情況下,確定性建模比機率建模更自然。例如,預測使用者是否從某電商網站購買一樣商品,這時樹模型是很好的選擇,因為使用者天然地遵循基於規則的決策過程。使用者的決策過程可能看起來像這樣:

  1. 我以前在這個平台上有過愉快的購物經驗嗎?如果有,繼續。
  2. 我現在需要這件商品嗎? (例如,冬天我應該買太陽眼鏡和泳褲嗎?)如果是,繼續。
  3. 根據我的用戶統計訊息,這是我有興趣購買的產品嗎?如果是,繼續。
  4. 這個東西太貴嗎?如果沒有,繼續。
  5. 其他顧客對這個產品的評價是否夠高,讓我可以放心地購買它?如果是,繼續。

#一般來說,人類遵循基於規則和結構化的決策過程。在這些情況下,機率建模是不必要的。

結論

  • 最好將基於樹的方法視為神經網路的縮小版本,以更簡單的方式進行特徵分類、優化、資訊流傳遞等。
  • 基於樹的方法和神經網路方法在用途上的主要差異在於確定性(0/1)與機率性資料結構。使用確定性模型可以更好地對結構化(表格)資料進行建模。
  • 不要低估樹方法的威力。

以上是機器學習:不要低估樹模型的威力的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
META的新AI助手:生產力助推器還是時間下沉?META的新AI助手:生產力助推器還是時間下沉?May 01, 2025 am 11:18 AM

Meta攜手Nvidia、IBM和Dell等合作夥伴,拓展了Llama Stack的企業級部署整合。在安全方面,Meta推出了Llama Guard 4、LlamaFirewall和CyberSecEval 4等新工具,並啟動了Llama Defenders計劃,以增強AI安全性。此外,Meta還向10個全球機構(包括致力於改善公共服務、醫療保健和教育的初創企業)發放了總額150萬美元的Llama Impact Grants。 由Llama 4驅動的全新Meta AI應用,被設想為Meta AI

80%的Zers將嫁給AI:研究80%的Zers將嫁給AI:研究May 01, 2025 am 11:17 AM

公司開創性的人類互動公司Joi AI介紹了“ AI-Iatsionship”一詞來描述這些不斷發展的關係。 Joi AI的關係治療師Jaime Bronstein澄清說,這並不是要取代人類C

AI使互聯網的機器人問題變得更糟。這家耗資20億美元的創業公司在前線AI使互聯網的機器人問題變得更糟。這家耗資20億美元的創業公司在前線May 01, 2025 am 11:16 AM

在線欺詐和機器人攻擊對企業構成了重大挑戰。 零售商與機器人ho積產品,銀行戰斗帳戶接管以及社交媒體平台與模仿者鬥爭。 AI的興起加劇了這個問題,Rende

賣給機器人:將創造或破壞業務的營銷革命賣給機器人:將創造或破壞業務的營銷革命May 01, 2025 am 11:15 AM

AI代理人有望徹底改變營銷,並可能超過以前技術轉變的影響。 這些代理代表了生成AI的重大進步,不僅是處理諸如chatgpt之類的處理信息,而且還採取了Actio

計算機視覺技術如何改變NBA季后賽主持人計算機視覺技術如何改變NBA季后賽主持人May 01, 2025 am 11:14 AM

人工智能對關鍵NBA遊戲4決策的影響 兩場關鍵遊戲4 NBA對決展示了AI在主持儀式中改變遊戲規則的角色。 首先,丹佛的尼古拉·喬基奇(Nikola Jokic)錯過了三分球,導致亞倫·戈登(Aaron Gordon)的最後一秒鐘。 索尼的鷹

AI如何加速再生醫學的未來AI如何加速再生醫學的未來May 01, 2025 am 11:13 AM

傳統上,擴大重生醫學專業知識在全球範圍內要求廣泛的旅行,動手培訓和多年指導。 現在,AI正在改變這一景觀,克服地理局限性並通過EN加速進步

Intel Foundry Direct Connect 2025的關鍵要點Intel Foundry Direct Connect 2025的關鍵要點May 01, 2025 am 11:12 AM

英特爾正努力使其製造工藝重回領先地位,同時努力吸引無晶圓廠半導體客戶在其晶圓廠製造芯片。為此,英特爾必須在業界建立更多信任,不僅要證明其工藝的競爭力,還要證明合作夥伴能夠以熟悉且成熟的工作流程、一致且高可靠性地製造芯片。今天我聽到的一切都讓我相信英特爾正在朝著這個目標前進。 新任首席執行官譚立柏的主題演講拉開了當天的序幕。譚立柏直率而簡潔。他概述了英特爾代工服務的若干挑戰,以及公司為應對這些挑戰、為英特爾代工服務的未來規劃成功路線而採取的措施。譚立柏談到了英特爾代工服務正在實施的流程,以更以客

AI出了問題嗎?現在在那里為此保險AI出了問題嗎?現在在那里為此保險May 01, 2025 am 11:11 AM

全球專業再保險公司Chaucer Group和Armilla AI解決了圍繞AI風險的日益嚴重的問題,已聯手引入了新型的第三方責任(TPL)保險產品。 該政策保護業務不利

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)