由於神經網路的複雜性,它們常常被認為是解決所有機器學習問題的「聖杯」。而另一方面,基於樹的方法並未得到同等重視,主要原因在於這類演算法看起來很簡單。然而,這兩種演算法看似不同,卻像一枚硬幣的正反面,都很重要。
樹模型 VS 神經網路
基於樹的方法通常優於神經網路。本質上,將基於樹的方法和基於神經網路的方法放在同一個類別中是因為,它們都透過逐步解構來處理問題,而不是像支援向量機或Logistic 迴歸那樣透過複雜邊界來分割整個資料集。
很明顯,基於樹的方法沿著不同的特徵逐步分割特徵空間,以最佳化資訊增益。不那麼明顯的是,神經網路也以類似的方式處理任務。每個神經元監視特徵空間的一個特定部分(存在多種重疊)。當輸入進入該空間時,某些神經元就會被啟動。
神經網路以機率的視角看待這種逐段模型擬合 (piece-by-piece model fitting),而基於樹的方法則採用確定性的視角。不管怎樣,這兩者的表現都依賴模型的深度,因為它們的組件與特徵空間的各個部分有關聯。
包含太多組件的模型(對於樹模型而言是節點,對於神經網路則是神經元)會過度擬合,而組件太少的模型根本無法給出有意義的預測。 (二者一開始都是記憶資料點,而不是學習泛化。)
要想更直觀地了解神經網路是如何分割特徵空間的,可閱讀這篇介紹通用近似定理的文章:https://medium.com/analytics-vidhya/you-dont-understand-neural-networks-until-you-understand-the-universal-approximation-theory-85b3e7677126。
雖然決策樹有許多強大的變體,如隨機森林、梯度提升、AdaBoost 和深度森林,但一般來說,基於樹的方法本質上是神經網路的簡化版本。
基於樹的方法透過垂直線和水平線逐段解決問題,以最小化熵(優化器和損失)。神經網路透過激活函數來逐段解決問題。
基於樹的方法是確定性的,而不是機率性的。這帶來了一些不錯的簡化,例如自動特徵選擇。
決策樹中被活化的條件節點類似於神經網路中被活化的神經元(訊息流)。
神經網路透過擬合參數對輸入進行變換,間接指導後續神經元的活化。決策樹則明確地擬合參數來指導資訊流。 (這是確定性與機率性相對應的結果。)
資訊在兩個模型中的流動相似,只是在樹模型中的流動方式更簡單。
樹模型的1 和0 選擇VS 神經網路的機率選擇
當然,這是一個抽象的結論,甚至可能是有爭議的。誠然,建立這種聯繫有許多障礙。不管怎樣,這是理解基於樹的方法何時以及為什麼優於神經網路的重要部分。
對於決策樹而言,處理表格或表格形式的結構化資料是很自然的。大多數人都同意用神經網路執行表格資料的迴歸和預測屬於大材小用,所以這裡做了一些簡化。選擇 1 和 0,而不是機率,是這兩種演算法之間差異的主要根源。因此,基於樹的方法可成功應用於不需要機率的情況,如結構化資料。
例如,基於樹的方法在 MNIST 資料集上表現出很好的效能,因為每個數字都有幾個基本特徵。不需要計算機率,這個問題也不是很複雜,這就是為什麼設計良好的樹集成模型性能可以媲美現代卷積神經網絡,甚至更好。
通常,人們傾向於說「基於樹的方法只是記住了規則」,這種說法是對的。神經網路也是一樣,只不過它能記住更複雜的、基於機率的規則。神經網路並非明確地對 x>3 這樣的條件給出真 / 假的預測,而是將輸入放大到很高的值,從而得到 sigmoid 值 1 或產生連續表達式。
另一方面,由於神經網路非常複雜,因此使用它們可以做很多事情。卷積層和循環層都是神經網路的傑出變體,因為它們處理的資料往往需要機率計算的細微差別。
很少有圖像可以用 1 和 0 建模。決策樹值不能處理具有許多中間值(例如0.5)的資料集,這就是為什麼它在MNIST 資料集上表現很好的原因,在MNIST 中,像素值幾乎都是黑色或白色,但其他資料集的像素值不是(例如ImageNet)。類似地,文本有太多的資訊和太多的異常,無法用確定性的術語來表達。
這也是神經網路主要用於這些領域的原因,也是神經網路研究在早期(21 世紀初之前)停滯不前的原因,當時無法獲得大量圖像和文字數據。神經網路的其他常見用途僅限於大規模預測,例如 YouTube 影片推薦演算法,其規模非常大,必須使用機率。
任何公司的資料科學團隊可能都會使用基於樹的模型,而不是神經網絡,除非他們正在建造一個重型應用,例如模糊 Zoom 影片的背景。但在日常業務分類任務上,基於樹的方法因其確定性特質,使這些任務變得輕量級,其方法與神經網路相同。
在許多實際情況下,確定性建模比機率建模更自然。例如,預測使用者是否從某電商網站購買一樣商品,這時樹模型是很好的選擇,因為使用者天然地遵循基於規則的決策過程。使用者的決策過程可能看起來像這樣:
- 我以前在這個平台上有過愉快的購物經驗嗎?如果有,繼續。
- 我現在需要這件商品嗎? (例如,冬天我應該買太陽眼鏡和泳褲嗎?)如果是,繼續。
- 根據我的用戶統計訊息,這是我有興趣購買的產品嗎?如果是,繼續。
- 這個東西太貴嗎?如果沒有,繼續。
- 其他顧客對這個產品的評價是否夠高,讓我可以放心地購買它?如果是,繼續。
#一般來說,人類遵循基於規則和結構化的決策過程。在這些情況下,機率建模是不必要的。
結論
- 最好將基於樹的方法視為神經網路的縮小版本,以更簡單的方式進行特徵分類、優化、資訊流傳遞等。
- 基於樹的方法和神經網路方法在用途上的主要差異在於確定性(0/1)與機率性資料結構。使用確定性模型可以更好地對結構化(表格)資料進行建模。
- 不要低估樹方法的威力。
以上是機器學習:不要低估樹模型的威力的詳細內容。更多資訊請關注PHP中文網其他相關文章!

近年来,图神经网络(GNN)取得了快速、令人难以置信的进展。图神经网络又称为图深度学习、图表征学习(图表示学习)或几何深度学习,是机器学习特别是深度学习领域增长最快的研究课题。本次分享的题目为《GNN的基础、前沿和应用》,主要介绍由吴凌飞、崔鹏、裴健、赵亮几位学者牵头编撰的综合性书籍《图神经网络基础、前沿与应用》中的大致内容。一、图神经网络的介绍1、为什么要研究图?图是一种描述和建模复杂系统的通用语言。图本身并不复杂,它主要由边和结点构成。我们可以用结点表示任何我们想要建模的物体,可以用边表示两

当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。 GPU方案GPU与CPU的架构对比CPU遵循的是冯·诺依曼架构,其核心是存储程序/数据、串行顺序执行。因此CPU的架构中需要大量的空间去放置存储单元(Cache)和控制单元(Control),相比之下计算单元(ALU)只占据了很小的一部分,所以CPU在进行大规模并行计算

在我的世界(Minecraft)中,红石是一种非常重要的物品。它是游戏中的一种独特材料,开关、红石火把和红石块等能对导线或物体提供类似电流的能量。红石电路可以为你建造用于控制或激活其他机械的结构,其本身既可以被设计为用于响应玩家的手动激活,也可以反复输出信号或者响应非玩家引发的变化,如生物移动、物品掉落、植物生长、日夜更替等等。因此,在我的世界中,红石能够控制的机械类别极其多,小到简单机械如自动门、光开关和频闪电源,大到占地巨大的电梯、自动农场、小游戏平台甚至游戏内建的计算机。近日,B站UP主@

当风大到可以把伞吹坏的程度,无人机却稳稳当当,就像这样:御风飞行是空中飞行的一部分,从大的层面来讲,当飞行员驾驶飞机着陆时,风速可能会给他们带来挑战;从小的层面来讲,阵风也会影响无人机的飞行。目前来看,无人机要么在受控条件下飞行,无风;要么由人类使用遥控器操作。无人机被研究者控制在开阔的天空中编队飞行,但这些飞行通常是在理想的条件和环境下进行的。然而,要想让无人机自主执行必要但日常的任务,例如运送包裹,无人机必须能够实时适应风况。为了让无人机在风中飞行时具有更好的机动性,来自加州理工学院的一组工

1 什么是对比学习1.1 对比学习的定义1.2 对比学习的原理1.3 经典对比学习算法系列2 对比学习的应用3 对比学习在转转的实践3.1 CL在推荐召回的实践3.2 CL在转转的未来规划1 什么是对比学习1.1 对比学习的定义对比学习(Contrastive Learning, CL)是近年来 AI 领域的热门研究方向,吸引了众多研究学者的关注,其所属的自监督学习方式,更是在 ICLR 2020 被 Bengio 和 LeCun 等大佬点名称为 AI 的未来,后陆续登陆 NIPS, ACL,

本文由Cristian Bodnar 和Fabrizio Frasca 合著,以 C. Bodnar 、F. Frasca 等人发表于2021 ICML《Weisfeiler and Lehman Go Topological: 信息传递简单网络》和2021 NeurIPS 《Weisfeiler and Lehman Go Cellular: CW 网络》论文为参考。本文仅是通过微分几何学和代数拓扑学的视角讨论图神经网络系列的部分内容。从计算机网络到大型强子对撞机中的粒子相互作用,图可以用来模

AI面部识别领域又开辟新业务了?这次,是鉴别二战时期老照片里的人脸图像。近日,来自谷歌的一名软件工程师Daniel Patt 研发了一项名为N2N(Numbers to Names)的 AI人脸识别技术,它可识别二战前欧洲和大屠杀时期的照片,并将他们与现代的人们联系起来。用AI寻找失散多年的亲人2016年,帕特在参观华沙波兰裔犹太人纪念馆时,萌生了一个想法。这一张张陌生的脸庞,会不会与自己存在血缘的联系?他的祖父母/外祖父母中有三位是来自波兰的大屠杀幸存者,他想帮助祖母找到被纳粹杀害的家人的照

OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。然而现存的剪枝方法大都只针对特定模型,特定任务,且需要很


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver CS6
視覺化網頁開發工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中