在 NLP 領域,大型語言模型(LLM)已經成功地在各種自然語言任務中充當通用介面。只要我們能夠將輸入和輸出轉換為文本,就能使得基於 LLM 的介面適應一個任務。舉例而言,摘要任務輸入文檔,輸出摘要資訊。所以,我們能夠將輸入文件饋入摘要型語言模型,並產生摘要。
儘管 LLM 在 NLP 任務中取得了成功的應用,但研究人員仍努力將其原生地用於圖像和音訊等多模態資料。作為智慧的基本組成部分,多模態感知是實現通用人工智慧的必要條件,無論是對於知識獲取還是與現實世界打交道。更重要的是,解鎖多模態輸入能夠大幅拓展語言模型在更多高價值領域的應用,例如多模態機器人、文件智慧和機器人技術。
因此,微軟團隊在論文《Language Is Not All You Need: Aligning Perception with Language Models》中介紹了一個##多模態大型語言模型(MLLM)-KOSMOS-1,它可以感知一般模態、遵循指令(即零樣本學習)以及在上下文中學習(即少樣本學習)。研究目標是使感知與 LLM 保持一致,如此一來模型能夠看到(see)和說話(talk)。研究者依照 METALM(參見論文《Language models are general-purpose interfaces》 )的方式從頭開始訓練 KOSMOS-1。
- #論文網址:https://arxiv.org/ pdf/2302.14045.pdf
- #專案網址:https://github.com/microsoft/unilm
#如下圖1 所示,研究者將一個基於Transformer 的語言模型作為通用接口,並將其與感知模組對接。他們在網頁規模的多模態語料庫上訓練模型,語料庫包含了文字資料、任意交錯的圖像和文字、以及圖像字幕對。此外,研究者也透過傳輸純語言資料來校準跨模態的指令遵循能力。
最終,KOSMOS-1 模型原生支援零樣本和少樣本學習設定下的語言、知覺語言與視覺任務,如下表 1 所示。
#研究者在下圖 2 和圖 3 中展示了一些生成範例。 除了各種自然語言任務,KOSMOS-1 模型能夠原生處理廣泛的感知密集型任務,如視覺對話、視覺解釋、視覺問答、圖像字幕、簡單的數學方程式、OCR 和帶有描述的零樣本影像分類。 他們也根據瑞文推理測驗(Raven's Progressive Matrices, RPM)建立了一個 IQ 測驗基準,用來評估 MLLM 的非語言推理能力。
這些範例表明,多模態感知的原生支援為將LLM 應用於新任務提供了新的機遇。此外與 LLM 相比,MLLM 實現了更好的常識推理性能,表明了跨模態遷移有助於知識獲取。
由於 KOSMOS-1 模型的參數量為 16 億,因此有網友表示有望在自己的電腦上運行這個多模態大模型。
KOSMOS-1:一個多模態大型語言模型
如圖1 所示,KOSMOS-1 是一個多模態語言模型,它既可以感知一般的模態、遵循指令、還能在上下文中學習並產生輸出。具體來說,KOSMOS-1 的主幹是一個基於 Transformer 的因果語言模型。除了文字之外,其他模態也能被嵌入並輸入到該模型中,如下圖中,除了語言上還有視覺、語音等的嵌入。 Transformer 解碼器用作多模態輸入的通用介面。一旦模型訓練完成,KOSMOS-1 在零樣本和少樣本設定中也能對語言任務和多模態任務進行評估。
Transformer 解碼器以統一的方式感知模態,輸入訊息會被 flatten 為具有特殊 token 的序列。例如 表示序列開始、 表示序列結束。特殊 token
#嵌入模組將文字token 和其他輸入模態編碼成向量表示,對於輸入token,該研究使用查找表將其映射到嵌入。對於連續訊號模態(例如,影像和音訊),也可以將輸入表示為離散編碼。
之後,得到的輸入序列嵌入會被饋送到基於 Transformer 的解碼器。然後因果模型以一種自回歸的方式處理序列,從而產生下一個 token。總而言之,MLLM 框架可以靈活地處理各種資料類型,只要將輸入表示為向量即可。
模型訓練
首先是訓練資料集。資料集包括文字語料庫、圖像 - 字幕對、圖像和文字交叉資料集。具體而言,文字語料庫包括The Pile 、Common Crawl (CC);圖像- 字幕對包括English LAION-2B、LAION-400M、COYO-700M 以及Conceptual Captions;圖像和文字交叉多模態資料集來自Common Crawl snapshot 。
資料集有了,然後是訓練設定。 MLLM 元件包含 24 層、隱藏維度是 2048、8192 個 FFN 和 32 個注意力頭、參數量為 1.3B。為了使模型更好的收斂,圖像表示是從具有 1024 個特徵維度的預訓練 CLIP ViT-L/14 模型獲得的。影像在訓練過程中被預處理為 224×224 分辨率,此外,訓練期間除了最後一層,所有的 CLIP 模型參數被凍結。 KOSMOS-1 的參數總數約為 1.6B。
實驗結果
該研究進行了一系列豐富的實驗來評估KOSMOS-1 :語言任務(語言理解、語言生成、 OCR-free 文本分類);跨模態遷移(常識推理);非語言推理( IQ 測試);感知- 語言任務(圖像字幕、視覺問答、網頁問答);視覺任務(零樣本影像分類、帶有描述的零樣本影像分類)。
圖片字幕。 下表給出了不同模型在 COCO 和 Flickr30k 上的零樣本表現。相較於其他模型,KOSMOS-1 均取得了顯著效果,甚至在參數量遠小於 Flamingo 的基礎上,效能也不錯。
下表為少樣本效能比較:
視覺問答。 KOSMOS-1 比Flamingo-3B 和Flamingo-9B 模型具有更高的準確率和穩健性:
下表為少樣本效能比較:
IQ 測驗。瑞文推理測驗是評估非語言推理最常見的測驗之一。圖 4 顯示了一個範例。
表 6 顯示了在 IQ 測試資料集上的評估結果。 KOSMOS-1 能夠在非語言環境中感知抽象概念模式,然後在多個選擇中推理出之後的元素。據了解,這是首次有模型可以執行此類零樣本 Raven IQ 測試。
#網頁問答。 網頁問答旨在從網頁中找到問題的答案。它要求模型既能理解文本的語義,又能理解文本的結構。結果如下:
#多模態思維鏈提示。 受思維鏈提示的啟發,本文對這方面進行了實驗。如圖 5 本文將感知語言任務分解為兩個步驟。在第一階段給定影像,使用提示來引導模型產生符合要求的輸出,以產生最終結果。
從表9 可以看出,多模態思考鏈提示的得分為72.9 分,比標準提示高出5.8 分:
#了解更多實驗內容,請參考原文。
以上是微軟多模態ChatGPT來了? 16億參數搞定看圖答題、智商測驗等任務的詳細內容。更多資訊請關注PHP中文網其他相關文章!

介紹 恭喜!您經營一家成功的業務。通過您的網頁,社交媒體活動,網絡研討會,會議,免費資源和其他來源,您每天收集5000個電子郵件ID。下一個明顯的步驟是

介紹 在當今快節奏的軟件開發環境中,確保最佳應用程序性能至關重要。監視實時指標,例如響應時間,錯誤率和資源利用率可以幫助MAIN

“您有幾個用戶?”他扮演。 阿爾特曼回答說:“我認為我們上次說的是每週5億個活躍者,而且它正在迅速增長。” “你告訴我,就像在短短幾週內翻了一番,”安德森繼續說道。 “我說那個私人

介紹 Mistral發布了其第一個多模式模型,即Pixtral-12b-2409。該模型建立在Mistral的120億參數Nemo 12B之上。是什麼設置了該模型?現在可以拍攝圖像和Tex

想像一下,擁有一個由AI驅動的助手,不僅可以響應您的查詢,還可以自主收集信息,執行任務甚至處理多種類型的數據(TEXT,圖像和代碼)。聽起來有未來派?在這個a


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能