搜尋
首頁科技週邊人工智慧從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

大規模生成模型在近兩年為自然語言處理甚至電腦視覺帶來的巨大的突破。最近這股風潮也影響了強化學習,尤其是離線強化學習(offline RL),諸如Decision Transformer (DT)[1], Trajectory Transformer(TT)[2], Gato[3], Diffuser[4]這樣的方法,將強化學習的數據(包括狀態,動作,獎勵和return-to-go)當成了一串去結構化的序列數據,並將建模這些序列數據作為學習的核心任務。這些模型都可以用監督或自我監督學習的方法來訓練,避免了傳統強化學習中比較不穩定的梯度訊號。即便使用複雜的策略提升 (policy improvement) 和估值 (value estimation) 方法,它們在離線強化學習中都展現了非常好的表現。

本篇將簡單談談這些基於序列建模的強化學習方法,下篇作者將介紹我們新提出的,Trajectory Autoencoding Planner(TAP),一種用Vector Quantised Variational AutoEncoder (VQ-VAE)進行序列建模並進行高效率的隱動作空間(latent action space)內規劃的方法。

Transformer 與強化學習

Transformer 架構[5] 於2017 年提出之後慢慢引發了自然語言處理的革命,後續的BERT 和GPT-3 逐漸將自監督Transformer 這個組合不斷推向新的高度,在自然語言處理領域不斷湧現出少樣本(few-shot) 學習等性質的同時,也開始向諸如計算機視覺的領域不斷擴散[6][7] 。

然而對於強化學習來說,這個過程似乎在 2021 年之前都不是特別明顯。在 2018 年,多頭注意力機制也被引入強化學習 [8],這類工作基本上都是應用在類似半符號化(sub-symbolic) 的領域嘗試解決強化學習泛化的問題。之後這類嘗試就一直處於不溫不火的狀態。根據筆者個人的經驗,實際上 Transformer 在強化學習上也並沒有展現出穩定的壓倒性的優勢,而且還很難訓練。在20 年我們的一個用Relational GCN 做強化學習的工作中[9],我們其實也在背後試過Transformer,但是基本上比傳統結構(類似CNN)差得多,很難穩定訓練得到一個能用的policy。為什麼 Transformer 和傳統線上強化學習(online RL)的相性比較差還是個開放問題,例如 Melo[10] 解釋說是因為傳統的 Transformer 的參數初始化不適合強化學習,在此我就不多做討論了。

2021 年中,Decision Transformer (DT)和 Trajectory Transformer(TT)的發表掀起了 Transformer 在 RL 上應用的新大潮。這兩個工作的想法其實很直接:如果 Transformer 和線上強化學習的演算法不是很搭,那要不乾脆把強化學習當成一個自監督學習的任務?趁著離線強化學習這個概念也很火熱,這兩個工作都將自己的主要目標任務鎖定為建模離線資料集(offline dataset),然後再將這個序列模型用作控制和決策。

對於強化學習來說,所謂序列就是由狀態(state) s ,動作(action)從Transformer到擴散模型,一文了解基於序列建模的強化學習方法 ,獎勵(reward) r 和價值( value) v 構成的軌跡(trajectory) 從Transformer到擴散模型,一文了解基於序列建模的強化學習方法。其中價值目前一般是被用 return-to-go 來替代,可以被看成是一種蒙特卡洛估計(Monte Carlo estimation)。離線資料集就由這條條軌跡構成。軌跡的產生和環境的動力學模型(dynamics)以及行為策略(behaviour policy)從Transformer到擴散模型,一文了解基於序列建模的強化學習方法有關。而所謂序列建模,就是要建模產生產生這個序列的機率分佈(distribution),或者嚴格上說是其中的一些條件機率。

從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

#

Decision Transformer

DT 的做法是建模一個從過往資料和價值到動作的映射(return-conditioned policy),也就是建模了一個動作的條件機率的數學期望從Transformer到擴散模型,一文了解基於序列建模的強化學習方法 。這個想法很類似 Upside Down RL[11],不過很有可能背後的直接動機是模仿 GPT2/3 那種根據提示詞(prompt) 完成下游任務的做法。這種做法的一個問題是要決定什麼是最好的目標價值從Transformer到擴散模型,一文了解基於序列建模的強化學習方法沒有一個比較系統化的方法。然而 DT 的作者發現即使將目標價值設為整個資料集中的最高 return,最後 DT 的表現也可以很不錯。

從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

Decision Transformer, Figure 1

對於有強化學習背景的人來說,DT 這樣的方法能取得強烈的表現是非常反直覺的。如果說 DQN,策略梯度(Policy Gradient)這類方法還可以只把神經網路當成一個能做插值泛化的擬合函數,強化學習中的策略提升、估值仍然是構造策略的核心的話。 DT 就完全可以說是以神經網路為核心的了,背後它如何把一個可能不切實際的高目標價值聯繫到一個合適的動作的整個過程都完全是黑箱。 DT 的成功可以說從強化學習的角度來看有些沒有道理,不過我覺得這也正是這種實證研究的魅力所在。筆者認為神經網絡,或者說 Transformer 的泛化能力可能超出整個 RL 社群先前的預期。

DT 在所有序列建模方法中也是非常簡單的,幾乎所有強化學習的核心問題都在 Transformer 內部被解決了。這種簡單性是它目前最受青睞的原因之一。不過它黑盒的性質也導致我們在演算法設計層面失去了許多抓手,傳統的強化學習中的一些成果很難被融入其中。而這些成果的有效性已經在一些超大規模的實驗(如 AlphaGo, AlphaStar, VPT)中被反覆證實了。

Trajectory Transformer

TT 的做法則更類似傳統的模型為基礎的強化學習 (model-based RL) 的規劃(planning)方法。在建模方面,它將整個序列中的元素都離散化,然後用了像 GPT-2 那樣的離散的自回歸(auto-regressive)方式來建模整個離線資料集。這使得它能夠建模任意給定除去 return-to-go 的序列的後續 從Transformer到擴散模型,一文了解基於序列建模的強化學習方法。因為建模了後續序列的分佈,TT 其實就成為了一個序列生成模型。透過在產生的序列中尋找擁有更好的估值(value estimation)的序列,TT 就可以輸出一個「最優規劃」。至於尋找最優序列的方法,TT 用了自然語言常用的方法:beam search 的變種。基本上就是永遠保留已經展開的序列中最優的一部分序列從Transformer到擴散模型,一文了解基於序列建模的強化學習方法,然後在它們的基礎上尋找下一步的最優序列集 從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

從強化學習的角度來說,TT 沒有 DT 那麼離經叛道。它的有趣之處在於(和 DT 一樣)完全拋棄了原本強化學習中馬可夫決策過程(Markov Decision Process)的因果圖結構。先前的模型為基礎的方法例如,PETS, world model, dramerv2 等,都會遵循馬可夫過程(或隱式馬可夫)中策略函數、轉移函數、獎勵函數等的定義,也就是狀態分佈的條件是上一步的狀態,而動作、獎勵、價值都由當下的狀態決定。整個強化學習社群一般相信這樣能提高樣本效率,不過這樣的圖結構其實也可能是一種限制。自然語言領域從 RNN 到 Transformer 以及電腦視覺領域 CNN 到 Transformer 的轉變其實都體現了:隨著資料增加,讓網路自己學習圖結構更有利於獲得表現更好的模型。

從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

DreamerV2, Figure 3由於TT 基本上把所有序列預測的任務交給了Transformer,Transformer 就能更有彈性地從資料中學習出更好的圖結構。如下圖,TT 建模出的行為策略根據不同的任務和資料集展現出不同的圖結構。圖左對應了傳統的馬可夫策略,圖右對應了一種動作滑動平均的策略。

從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

Trajectory Transformer, Figure 4

Transformer 強大的序列建模能力帶來了更高的長序列建模精度,下圖展示了TT 在100 步以上的預測仍然保持了高精度,而遵循馬可夫性質的單步預測模型很快就因為預測誤差疊加的問題崩潰了。

從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

Trajectory Transformer, Figure 2TT 雖然在具體建模和預測方面和傳統方法有所不同,它提供的預測能力還是給未來融入強化學習的其它成果留出了很好的抓手。然而TT 在預測速度上有一個重要問題:因為需要建模整個序列的分佈,它將序列中所有的元素按照維度進行離散化,這也就是說一個100 維的狀態就需要佔用序列中的100 個位置,這使得被建模的序列的實際長度很容易變得特別長。而對於 Transformer,它關於序列長度 N 的運算複雜度是 從Transformer到擴散模型,一文了解基於序列建模的強化學習方法,這使得從 TT 中取樣一個對未來的預測變得非常昂貴。即使 100 維以下的任務 TT 也需要數秒甚至數十秒來進行一步決策,這樣的模型很難被投入實時的機器人控製或在線學習之中。

Gato

Gato 是 Deepmind 發表的“通才模型”,其實就是跨模態多任務生成模型。用同一個 Transformer 它可以完成從自然語言問答,圖片描述,玩電子遊戲到機器人控制等各類工作。在針對連續控制(continous control)的建模方面 Gato 的做法基本上和 TT 類似。只不過 Gato 嚴格意義不是在做強化學習,它只是建模了專家策略產生的序列數據,然後在行動時它只需要採樣下一個動作,其實是對專家策略的一種模仿。

從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

#Gato Blog

其它序列產生模型:擴散模型

最近在圖片生成領域擴散模型(Diffusion Model)可以說是大紅大紫,DALLE-2 和Stable Diffusion 都是基於它進行圖片生成的。 Diffuser 就將這個方法也運用到了離線強化學習當中,其思路和 TT 類似,先建模序列的條件分佈,然後根據當前狀態採樣未來可能的序列。

Diffuser 相比TT 又擁有了更強的靈活性:它可以在設定起點和終點的情形下讓模型填充出中間的路徑,這樣就能實現目標驅動(而非最大化獎勵函數)的控制。它還可以將多個目標和先驗的達成目標的條件混合起來幫助模型完成任務。

從Transformer到擴散模型,一文了解基於序列建模的強化學習方法

Diffuser Figure 1Diffuser 相對於傳統的強化學習模式也是比較顛覆的,它產生的計劃不是在時間軸上逐步展開,而是從整個序列意義上的模糊變得逐漸精確。擴散模型本身的進一步研究也是電腦視覺中的一個火熱的話題,在其模型本身上很可能未來幾年也會有突破。

不過擴散模型本身目前相比於其它生成模型有一個特別的缺陷,那就是它的生成速度相比於其它生成模型會更慢。很多相關領域的專家認為這一點可能在未來幾年內會被緩解。不過數秒的生成時間目前對於強化學習需要即時控制的情境來說是很難接受的。 Diffuser 提出了能夠提升生成速度的方法:從上一個步驟的計劃開始增加少量噪音來重新產生下一步的計劃,不過這樣做會一定程度上降低模型的表現。

以上是從Transformer到擴散模型,一文了解基於序列建模的強化學習方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
使用Lamini-Analytics Vidhya微調開源LLM使用Lamini-Analytics Vidhya微調開源LLMApr 12, 2025 am 10:20 AM

最近,隨著大語言模型和AI的興起,我們看到了自然語言處理方面的無數進步。文本,代碼和圖像/視頻生成等域中的模型具有存檔的人類的推理和P

Python中使用OpenCV和Roboflow進行性別檢測 - 分析VidhyaPython中使用OpenCV和Roboflow進行性別檢測 - 分析VidhyaApr 12, 2025 am 10:19 AM

介紹 從面部圖像中檢測性別是計算機視覺的眾多迷人應用之一。在這個項目中,我們將OpenCV結合在一起,以解決位置與性別分類的Roboflow API

生成AI在個性化廣告內容中的作用是什麼?生成AI在個性化廣告內容中的作用是什麼?Apr 12, 2025 am 10:18 AM

介紹 自易貨系統概念以來,廣告世界一直在進化。廣告商找到了創造性的方法來引起我們的關注。在當前年齡,消費者期望BR

Openai' o1-preview vs o1-mini:向前邁出的一步Openai' o1-preview vs o1-mini:向前邁出的一步Apr 12, 2025 am 10:04 AM

介紹 9月12日,OpenAI發布了一項名為“與LLM的學習推理”的更新。他們介紹了O1模型,該模型是使用強化學習來應對複雜推理任務的訓練。是什麼設置了此mod

如何使用OpenAI O1構建遊戲? - 分析Vidhya如何使用OpenAI O1構建遊戲? - 分析VidhyaApr 12, 2025 am 10:03 AM

介紹 OpenAI O1模型家族大大提高了推理能力和經濟表現,尤其是在科學,編碼和解決問題方面。 Openai的目標是創建越來越高的AI和O1模型

流行的LLM代理工具用於客戶查詢管理流行的LLM代理工具用於客戶查詢管理Apr 12, 2025 am 10:01 AM

介紹 如今,客戶查詢管理的世界正在以前所未有的速度移動,每天都有新的工具成為頭條新聞。大型語言模型(LLM)代理是在這種情況下的最新創新,增強了Cu

100天企業的AI實施計劃100天企業的AI實施計劃Apr 12, 2025 am 09:56 AM

介紹 採用生成AI可能是任何公司的變革旅程。但是,Genai實施過程通常會繁瑣且令人困惑。 Niit Lim的董事長兼聯合創始人Rajendra Singh Pawar

Pixtral 12B與QWEN2-VL-72BPixtral 12B與QWEN2-VL-72BApr 12, 2025 am 09:52 AM

介紹 人工智能革命引起了創造力的新時代,文本對圖像模型正在重新定義藝術,設計和技術的交集。 pixtral 12b和qwen2-vl-72b是兩個開創性的力量。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能