遙感成像技術在過去幾十年來取得顯著進步。現代機載感測器在空間、光譜和解析度上的不斷提升,已經能涵蓋地球表面大部分範圍,因此遙感技術在生態學、環境科學、土壤科學、水污染、冰川學、土地測量和分析等眾多研究領域發揮著至關重要的作用。由於遙感資料通常是多模態的、位於地理空間(地理定位)中,而尺度通常是全球範圍、資料規模也在不斷增長等等,這些特性都為遙感成像的自動分析帶來獨特的挑戰。
電腦視覺的許多領域中,如物件辨識、偵測和分割等等,深度學習尤其是卷積神經網路 (CNN) 已經是主流。卷積神經網路通常將 RGB 影像作為輸入並執行一系列卷積、局部歸一化和池化操作。 CNN 通常依賴大量的訓練數據,然後將產生的預訓練模型用作各種下游應用的通用特徵提取器。基於深度學習的電腦視覺技術的成功也啟發了遙感界,並且在許多遙感任務中取得重大進展,如高光譜影像分類、變化檢測。
CNN 主要基礎之一是卷積運算,它會捕捉輸入影像中元素(如輪廓和邊緣資訊)之間的局部交互作用。 CNN 對空間連結性和平移等效性等偏差進行編碼,這些特徵有助於建立通用高效的架構。 CNN 中的局部感受野限制了對影像中的遠距離依賴關係(如遠距離部分間的關係)的建模。卷積是與內容無關的,因為卷積濾波器的權重是固定的,無論其性質如何,都將相同的權重應用於所有輸入。視覺 transfomer (ViTs) 在電腦視覺的各種任務中展現了令人印象深刻的表現。 ViT 基於 self-attention 機制,透過學習序列元素之間的關係有效地捕捉全域互動。最近的研究表明,ViT 具有依賴內容的遠端互動建模能力,並且可以靈活地調整其感受野以對抗數據中的干擾並學習有效的特徵表示。因此,ViT 及其變體已成功用於許多電腦視覺任務,包括分類、檢測和分割。
ViT 在電腦視覺領域的成功,遙感分析中使用基於transformer 框架的任務顯著增長(見圖1),像是超高解析度影像分類、變化偵測、全色銳化,建築物偵測和影像字幕都有transformer 的身影。這開啟遙感分析的新紀元,研究者採用各種不同的方法,例如利用 ImageNet 預訓練或使用視覺 transformer 執行遙感預訓練。
類似地,相關文獻中也有基於純 transformer 設計或利用基於 transformer 和 CNN 的混合方法的方法。由於針對不同遙感問題的基於 transformer 的方法的迅速湧現,跟上最新的進展變得越來越具有挑戰性。
在文章中,作者回顧遙感分析領域的進展,並介紹在遙感領域中流行的基於transformer 的方法,文章主要貢獻如下:
對基於transformer 的模型在遙感成像中的應用進行整體概述,並且作者是第一個對遙感分析中使用transformer 進行調研的,彌合了計算機視覺和遙感在這個快速發展和受歡迎的領域的最新進展之間的差距。
- 對 CNN 和 Transformer 進行概述,討論它們各自的優缺點。
- 回顧文獻中 60 多種基於 transformer 的研究工作,討論遙感領域的最新進展。
- 探討遙感分析中 transformer 的不同挑戰與研究方向。
文章的其餘部分安排:第2 節討論有關遙感成像的其他相關研究;第3 節概述遙感中不同的成像模式;第4 節簡要概述CNN和視覺transformer;第5 節回顧超高解析度(VHR) 成像;第6 節介紹高光譜影像分析;第7 節介紹合成孔徑雷達(SAR)中基於transformer 的方法進展;第8 節討論未來研究方向。
更多細節請參考原文。
- 論文連結:https://arxiv.org/pdf/2209.01206.pdf
- GitHub 網址:https://github.com/VIROBO-15/Transformer-in-Remote-Sensing
以上是回顧60多種 Transformer 研究,一文總結遙感領域最新進展的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Apollo Research的一份新報告顯示,先進的AI系統的不受檢查的內部部署構成了重大風險。 在大型人工智能公司中缺乏監督,普遍存在,允許潛在的災難性結果

傳統測謊儀已經過時了。依靠腕帶連接的指針,打印出受試者生命體徵和身體反應的測謊儀,在識破謊言方面並不精確。這就是為什麼測謊結果通常不被法庭採納的原因,儘管它曾導致許多無辜者入獄。 相比之下,人工智能是一個強大的數據引擎,其工作原理是全方位觀察。這意味著科學家可以通過多種途徑將人工智能應用於尋求真相的應用中。 一種方法是像測謊儀一樣分析被審問者的生命體徵反應,但採用更詳細、更精確的比較分析。 另一種方法是利用語言標記來分析人們實際所說的話,並運用邏輯和推理。 俗話說,一個謊言會滋生另一個謊言,最終

航空航天業是創新的先驅,它利用AI應對其最複雜的挑戰。 現代航空的越來越複雜性需要AI的自動化和實時智能功能,以提高安全性,降低操作

機器人技術的飛速發展為我們帶來了一個引人入勝的案例研究。 來自Noetix的N2機器人重達40多磅,身高3英尺,據說可以後空翻。 Unitree公司推出的G1機器人重量約為N2的兩倍,身高約4英尺。比賽中還有許多體型更小的類人機器人參賽,甚至還有一款由風扇驅動前進的機器人。 數據解讀 這場半程馬拉松吸引了超過12,000名觀眾,但只有21台類人機器人參賽。儘管政府指出參賽機器人賽前進行了“強化訓練”,但並非所有機器人均完成了全程比賽。 冠軍——由北京類人機器人創新中心研發的Tiangong Ult

人工智能以目前的形式並不是真正智能的。它擅長模仿和完善現有數據。 我們不是在創造人工智能,而是人工推斷 - 處理信息的機器,而人類則

一份報告發現,在谷歌相冊Android版7.26版本的代碼中隱藏了一個更新的界面,每次查看照片時,都會在屏幕底部顯示一行新檢測到的面孔縮略圖。 新的面部縮略圖缺少姓名標籤,所以我懷疑您需要單獨點擊它們才能查看有關每個檢測到的人員的更多信息。就目前而言,此功能除了谷歌相冊已在您的圖像中找到這些人之外,不提供任何其他信息。 此功能尚未上線,因此我們不知道谷歌將如何準確地使用它。谷歌可以使用縮略圖來加快查找所選人員的更多照片的速度,或者可能用於其他目的,例如選擇要編輯的個人。我們拭目以待。 就目前而言

增強者通過教授模型根據人類反饋進行調整來震撼AI的開發。它將監督的學習基金會與基於獎勵的更新融合在一起,使其更安全,更準確,真正地幫助

科學家已經廣泛研究了人類和更簡單的神經網絡(如秀麗隱桿線蟲中的神經網絡),以了解其功能。 但是,出現了一個關鍵問題:我們如何使自己的神經網絡與新穎的AI一起有效地工作


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3漢化版
中文版,非常好用

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

SublimeText3 Linux新版
SublimeText3 Linux最新版