最近一段時間,文字生成的人工智慧在網路上掀起了一陣風暴:ChatGPT 因為可以對人們能想到的幾乎任何問題提供非常詳細、近乎逼真的回答而受到追捧。大模型應用的出現讓人們對於 AI 技術突破充滿了信心,不過很少人知道在背後,一個分散式機器學習框架正為這場生成式 AI 革命提供動力。
分散式運算框架 Ray 來自 A16z 支援的新創公司 Anyscale,它是讓 OpenAI 能夠強化其訓練 ChatGPT 等模型的關鍵。在 OpenAI 最近的所有大型語言模型背後都有 Ray 的身影 —— 它也可能是 OpenAI 備受期待的 GPT-4 背後的框架。隨著大模型技術的不斷落地,業內人士認為透過生成接近人類的內容,一個價值數十億美元的產業正在形成。
在這一領域,Ray 是影響力最大的框架。在它出現之前,OpenAI 使用自訂工具集合來開發大模型。但 OpenAI 總裁 Greg Brockman 在今年稍早的 Ray 峰會上就表示,隨著面臨的挑戰增多,該公司已轉而使用 Ray。
軟體公司 Weights & Biases 的 CEO Lukas Biewald 認為,Ray 已是 AI 世界中炙手可熱的後起之秀。 「因為新工具出現,你可以在筆記型電腦和大型分散式伺服器上運行相同程式碼。這是巨大的改變,隨著模型變得更大,它的重要性也會增加,」Biewald 表示。
十億美元的賭注
隨著技術的成熟,Ray 引來了資本市場的關注。 Anyscale 的股權成為了一種稀缺的商品,據 Business Insider 報道,有知情人士稱,其最近一輪融資是 C 輪融資的延伸,估值超過 10 億美元,幾天內就結束了。
一些投資者將Anyscale 描述為Horowitz 充滿希望的「下一個Databricks」—— 這個描述看來不無道理,因為這家新創公司的創始人之一Ion Stoica是市值310 億美元的數據巨頭Databricks 的共同創辦人。
「人工智慧的發展速度令人難以置信,人們一直在嘗試新方法,」Anyscale 執行長 Robert Nishihara 表示。 「ChatGPT 結合了先前大語言模型上的大量工作。在此基礎上,你需要擁有能夠實現靈活性、快速創新,並擴展不同演算法和方法的基礎設施。」
由於像ChatGPT 這樣熱門的新工具背後是越來越大的模型,科技公司不得不重新考慮從頭開始開發AI 的方式。 Ray 應運而生,使訓練這些龐大的模型變得更加容易,並且可以包含數千億個數據點,讓每個響應都具有準栩栩如生的感覺。
Ray 如何成為機器學習的首選工具
Ray 是一個基於記憶體共享的分散式計算框架,適用於細粒度的平行計算和異質計算,其提供了一個底層基礎架構,用於管理分配機器學習模型訓練工作的複雜任務。
在2017 年,UC Berkeley 的研究人員首次提交了Ray 的論文《 Ray: A Distributed Framework for Emerging AI Applications 》:
- 論文連結:https://arxiv.org/abs/1712.05889
- GitHub:https:// github.com/ray-project/ray
在該工作中,研究人員預測了下一代AI 應用程式的形態:與環境存在連續的交互,並從互動動作中進行學習。這些應用必然越來越多地在動態環境中來完成任務,根據環境的變化作出反應,並執行一系列的動作來達到長期目標。這些特性對於運行環境性能和靈活性等方面提出了全新且苛刻的系統要求,因此研究者提出了基於分散式的 Ray 框架。
Ray 實作了統一接口,可以表達任務並行和基於參與者的計算,由單一動態執行引擎支援。為了滿足效能要求,Ray 採用分散式調度程序和分散式容錯儲存來管理系統的控制狀態。它是首個將訓練、模擬和服務統一起來的分散式計算框架,基於動態任務執行引擎統一了角色並行(actor)和任務並行(task)的計算,並保障了框架的高可擴展性和高容錯性。
Ray 的架構。
基於該工作,2019 年12 月,UC Berkeley 的Robert Nishihara、Philipp Moritz 和Ion Stoica 以及伯克利教授Michael I. Jordan 創立了Anyscale,迄今為止該公司已融資2.6 億美元。
機器學習從業者通常可以在自己的筆記型電腦上運行使用有限資料集的小型模型,例如預測使用者購買產品的簡單模型。然而,像 ChatGPT 這樣的超大型模型,筆記型電腦是行不通的,這些模型需要大量伺服器來訓練。
使用大量設備訓練一個模型要面對一個重要挑戰 —— 在不同硬體上協調訓練。而Ray 恰好解決了這個難題,它為從業者提供了一種將不同硬體作為一個單元來管理的機制,用於確定什麼數據去哪裡,處理故障等等,硬體種類橫跨谷歌雲、AWS 和其他處理相同問題的產品組合。此外,Ray 也將其他語言中的一個關鍵程式設計概念「actor」擴展到 Python,眾所周知 Python 是機器學習程式的首選語言。
作為分散式運算框架,Ray 有兩個關鍵優勢,分別是位置感知(Locality-aware)和任務分配(task placement )。如下圖所示,Ray 能夠橫向擴展系統,以支援高吞吐量的細粒度任務,同時保持容錯和低延遲任務調度。
Ray 為OpenAI 訓練大模型消除了巨大的複雜性,為該公司騰出更多時間和精力專注於模型的關鍵能力。
新一代 AI 需要新的開發工具,Ray 只是一系列迅速興起的下一代機器學習工具中的一個,這些工具正在迅速顛覆 AI 的開發方式。例如,Google 的 JAX 框架也獲得了巨大關注,JAX 有望成為Google核心機器學習工具的支柱,已經在 DeepMind 和 Google Brain 被廣泛採用。
類似地,由 FirstMark Capital 和 Bessemer Venture Partners 支持的新創公司 Coiled 開發了一個名為 Dask 的平行計算框架。
最近大型語言模型正在釋放更多潛力,這些新機器學習工具將為業內科技巨頭和新創公司建立更強大的語言模型。
以上是ChatGPT背後的開源AI框架Ray,現在價值10億美元的詳細內容。更多資訊請關注PHP中文網其他相關文章!

由於AI的快速整合而加劇了工作場所的迅速危機危機,要求戰略轉變以外的增量調整。 WTI的調查結果強調了這一點:68%的員工在工作量上掙扎,導致BUR

約翰·塞爾(John Searle)的中國房間論點:對AI理解的挑戰 Searle的思想實驗直接質疑人工智能是否可以真正理解語言或具有真正意識。 想像一個人,對下巴一無所知

與西方同行相比,中國的科技巨頭在AI開發方面的課程不同。 他們不專注於技術基準和API集成,而是優先考慮“屏幕感知” AI助手 - AI T

MCP:賦能AI系統訪問外部工具 模型上下文協議(MCP)讓AI應用能夠通過標準化接口與外部工具和數據源交互。由Anthropic開發並得到主要AI提供商的支持,MCP允許語言模型和智能體發現可用工具並使用合適的參數調用它們。然而,實施MCP服務器存在一些挑戰,包括環境衝突、安全漏洞以及跨平台行為不一致。 Forbes文章《Anthropic的模型上下文協議是AI智能體發展的一大步》作者:Janakiram MSVDocker通過容器化解決了這些問題。基於Docker Hub基礎設施構建的Doc

有遠見的企業家採用的六種策略,他們利用尖端技術和精明的商業敏銳度來創造高利潤的可擴展公司,同時保持控制。本指南是針對有抱負的企業家的,旨在建立一個

Google Photos的新型Ultra HDR工具:改變圖像增強的遊戲規則 Google Photos推出了一個功能強大的Ultra HDR轉換工具,將標準照片轉換為充滿活力的高動態範圍圖像。這種增強功能受益於攝影師

技術架構解決了新興的身份驗證挑戰 代理身份集線器解決了許多組織僅在開始AI代理實施後發現的問題,即傳統身份驗證方法不是為機器設計的

(注意:Google是我公司的諮詢客戶,Moor Insights&Strateging。) AI:從實驗到企業基金會 Google Cloud Next 2025展示了AI從實驗功能到企業技術的核心組成部分的演變,


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

記事本++7.3.1
好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

WebStorm Mac版
好用的JavaScript開發工具