搜尋
首頁科技週邊人工智慧無監督學習的12個最重要的演算法介紹及其用例總結


無監督學習(Unsupervised Learning)是和監督學習相對的另一種主流機器學習的方法,無監督學習是沒有任何的資料標註只有資料本身。

無監督學習的12個最重要的演算法介紹及其用例總結

無監督學習演算法有幾種類型,以下是其中最重要的12種:

1、聚類演算法根據相似性將資料點分組成簇

k-means聚類是一種流行的聚類演算法,它將資料分割為k組。

2、降維演算法降低了資料的維數,使其更容易視覺化和處理

主成分分析(PCA)是一種降維演算法,將資料投影到低維空間,PCA可以用來將資料降維到其最重要的特徵。

3.異常偵測演算法辨識異常值或異常資料點

支援向量機是可以用於異常檢測(範例)。異常檢測演算法用於檢測資料集中的異常點,異常檢測的方法有很多,但大多數可以分為有監督和無監督兩種。監督方法需要標記資料集,而無監督方法不需要。

無監督異常檢測演算法通常是基於密度估計,試圖找到資料空間中密集的區域外的點。

一個簡單的方法是計算每個點到k個最近鄰居的平均距離。距離相鄰點非常遠的點很可能是異常點。

還有許多基於密度的異常偵測演算法,包括局部離群因子(Local Outlier Factor,LOF)和支援向量資料描述(Support Vector Domain Description,SVDD)。這些演算法比簡單的k近鄰方法更複雜,通常可以檢測到更細微的異常。大多數異常檢測演算法都需要進行調整,例如指定一個參數來控制演算法對異常的敏感度。如果參數過低,演算法可能會漏掉一些異常。如果設定過高,演算法可能會產生誤報(將正常點識別為異常點)。

4、分割演算法將資料分成段或群組

分割演算法可以將影像分割為前景和背景。

這些演算法可以在不需要人工監督的情況下自動將資料集分割成有意義的群組。這個領域中比較知名的一個演算法是k-means演算法。此演算法透過最小化組內距離平方和將資料點分成k組。

另一種流行的分割演算法是mean shift演算法。該演算法透過迭代地將每個資料點移向其局部鄰域的中心來實現。 mean shift對異常值具有較強的穩健性,可以處理密度不均勻的資料集。但是在大型資料集上運行它的計算成本可能很高。

高斯混合模型(GMM)是一種可用於分割的機率模型。以前gmm需要大量的計算來訓練,但最近的研究進展使其更快。 gmm非常靈活,可以用於任何類型的資料。但是它們有時並不能總是產生最好的結果。對於簡單的資料集,k-means是一個很好的選擇,而gmm則更適合複雜的資料集。 mean shift可以用於任何一種情況,但在大型資料集上計算的成本會很高。

5、去雜訊演算法減少或移除資料中的雜訊

小波轉換可以用於影像去雜訊。但是各種來源可能會產生噪聲,包括資料損壞、缺失值和異常值。去噪演算法透過減少資料中的雜訊量來提高無監督學習模型的準確性。

現有的去雜訊演算法有多種,包括主成分分析(PCA)、獨立成分分析(ICA)和非負矩陣分解(NMF)。

6、連結預測演算法預測資料點之間的未來連結(例如,網路中兩個節點之間的未來互動)

連結預測可用於預測哪些人將成為社交網絡中的朋友。較常用的連結預測演算法之一是優先連接演算法,它預測如果兩個節點有許多現有連接,則它們更有可能被連接。

另一種流行的鏈路預測演算法是局部路徑演算法,它預測如果兩個節點共享一個共同的鄰居,那麼它們更有可能被關聯。該演算法可以捕捉“結構等價”的概念,因此在生物網路中經常使用。

最後,random walk with restart演算法也是一種連結預測演算法,它模擬網路上的一個隨機走動的人,在隨機節點[17]處重新啟動步行者。然後,步行者到達特定節點的機率被用來衡量兩個節點之間存在連接的可能性。

7、強化學習演算法透過反覆試驗來進行學習

Q-learning是基於值的學習演算法的一個例子;它實現簡單且通用。但是Q-learning有時會收斂到次優解。另一個例子是TD learning,它在計算上Q-learning學習要求更高,但通常可以找到更好的解決方案。

8、生成模型:演算法使用訓練資料產生新的資料

自編碼器是生成模型,可用於從影像資料集建立獨特的影像。在機器學習中,生成模型是一種捕捉一組資料的統計屬性的模型。這些模型可以用來產生新的數據,就像它們所使用的訓練的數據一樣。

產生模型用於各種任務,如無監督學習,資料壓縮和去雜訊。生成模型有很多種,例如隱馬可夫模型和玻爾茲曼機。每種模型都有其優缺點,並且適用於不同的任務。

隱馬可夫模型擅長對順序資料建模,而玻爾茲曼機器更擅長對高維度資料建模。透過在無標記資料上訓練它們,生成模型可以用於無監督學習。一旦模型經過訓練,就可以用來產生新的資料。然後這些產生的數據可以由人類或其他機器學習演算法進行標記。這個過程可以重複,直到生成模型學會產生數據,就像想要的輸出。

9、隨機森林是一種機器學習演算法,可用於監督和無監督學習

對於無監督學習,隨機森林可以找到一組相似的條目,識別異常值,並壓縮資料。

對於監督和無監督任務隨機森林已被證明優於其他流行的機器學習演算法(如支援向量機)。隨機森林是無監督學習的一個強大工具,因為它們可以處理具有許多特徵的高維度資料。它們也抵制過擬合,這意味著它們可以很好地推廣到新數據。

10、DBSCAN是一種基於密度的聚類演算法,可用於無監督學習

它基於密度,即每個區域的點的數量。如果 DBSCAN 的組內的點很靠近,則將它們指向一個群組,如果點相距較遠的點則會忽略。與其他聚類演算法相比,DBSCAN具有一些優勢。它可以找到不同大小和形狀的簇,並且不需要使用者預先指定簇的數量。此外,DBSCAN對異常值不敏感,這意味著它可以用來找到其他資料集沒有很好地表示的資料。但是DBSCAN也有一些缺點。例如,它可能很難在雜訊很大的資料集中找到良好的簇。另外就是DBSCAN需要一個密度閾值,可能不適用於所有資料集。

11、Apriori演算法用於尋找關聯、頻繁項集和順序模式

Apriori演算法是第一個關聯規則挖掘演算法,也是最經典的演算法。它·的工作原理是先找到資料中的所有頻繁項集,然後使用這些項集產生規則。

Apriori演算法的實作方式有很多種,可以針對不同的需求進行客製化。例如,可以控制支持度和置信度閾值以找到不同類型的規則。

12、Eclat演算法從事務資料庫中挖掘頻繁項目集,可用於購物車分析、入侵偵測和文字探勘

Eclat演算法是一種深度優先演算法,採用垂直資料表示形式,在概念格理論的基礎上利用基於前綴的等價關係將搜尋空間(概念格)劃分為較小的子空間(子概念格)。

以上是無監督學習的12個最重要的演算法介紹及其用例總結的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
AI內部部署的隱藏危險:治理差距和災難性風險AI內部部署的隱藏危險:治理差距和災難性風險Apr 28, 2025 am 11:12 AM

Apollo Research的一份新報告顯示,先進的AI系統的不受檢查的內部部署構成了重大風險。 在大型人工智能公司中缺乏監督,普遍存在,允許潛在的災難性結果

構建AI測謊儀構建AI測謊儀Apr 28, 2025 am 11:11 AM

傳統測謊儀已經過時了。依靠腕帶連接的指針,打印出受試者生命體徵和身體反應的測謊儀,在識破謊言方面並不精確。這就是為什麼測謊結果通常不被法庭採納的原因,儘管它曾導致許多無辜者入獄。 相比之下,人工智能是一個強大的數據引擎,其工作原理是全方位觀察。這意味著科學家可以通過多種途徑將人工智能應用於尋求真相的應用中。 一種方法是像測謊儀一樣分析被審問者的生命體徵反應,但採用更詳細、更精確的比較分析。 另一種方法是利用語言標記來分析人們實際所說的話,並運用邏輯和推理。 俗話說,一個謊言會滋生另一個謊言,最終

AI是否已清除航空航天行業的起飛?AI是否已清除航空航天行業的起飛?Apr 28, 2025 am 11:10 AM

航空航天業是創新的先驅,它利用AI應對其最複雜的挑戰。 現代航空的越來越複雜性需要AI的自動化和實時智能功能,以提高安全性,降低操作

觀看北京的春季機器人比賽觀看北京的春季機器人比賽Apr 28, 2025 am 11:09 AM

機器人技術的飛速發展為我們帶來了一個引人入勝的案例研究。 來自Noetix的N2機器人重達40多磅,身高3英尺,據說可以後空翻。 Unitree公司推出的G1機器人重量約為N2的兩倍,身高約4英尺。比賽中還有許多體型更小的類人機器人參賽,甚至還有一款由風扇驅動前進的機器人。 數據解讀 這場半程馬拉松吸引了超過12,000名觀眾,但只有21台類人機器人參賽。儘管政府指出參賽機器人賽前進行了“強化訓練”,但並非所有機器人均完成了全程比賽。 冠軍——由北京類人機器人創新中心研發的Tiangong Ult

鏡子陷阱:人工智能倫理和人類想像力的崩潰鏡子陷阱:人工智能倫理和人類想像力的崩潰Apr 28, 2025 am 11:08 AM

人工智能以目前的形式並不是真正智能的。它擅長模仿和完善現有數據。 我們不是在創造人工智能,而是人工推斷 - 處理信息的機器,而人類則

新的Google洩漏揭示了方便的Google照片功能更新新的Google洩漏揭示了方便的Google照片功能更新Apr 28, 2025 am 11:07 AM

一份報告發現,在谷歌相冊Android版7.26版本的代碼中隱藏了一個更新的界面,每次查看照片時,都會在屏幕底部顯示一行新檢測到的面孔縮略圖。 新的面部縮略圖缺少姓名標籤,所以我懷疑您需要單獨點擊它們才能查看有關每個檢測到的人員的更多信息。就目前而言,此功能除了谷歌相冊已在您的圖像中找到這些人之外,不提供任何其他信息。 此功能尚未上線,因此我們不知道谷歌將如何準確地使用它。谷歌可以使用縮略圖來加快查找所選人員的更多照片的速度,或者可能用於其他目的,例如選擇要編輯的個人。我們拭目以待。 就目前而言

加固芬特的指南 - 分析Vidhya加固芬特的指南 - 分析VidhyaApr 28, 2025 am 09:30 AM

增強者通過教授模型根據人類反饋進行調整來震撼AI的開發。它將監督的學習基金會與基於獎勵的更新融合在一起,使其更安全,更準確,真正地幫助

讓我們跳舞:結構化運動以微調我們的人類神經網讓我們跳舞:結構化運動以微調我們的人類神經網Apr 27, 2025 am 11:09 AM

科學家已經廣泛研究了人類和更簡單的神經網絡(如秀麗隱桿線蟲中的神經網絡),以了解其功能。 但是,出現了一個關鍵問題:我們如何使自己的神經網絡與新穎的AI一起有效地工作

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器