目前,大型語言模型(LLM)被認為是人工智慧突破的方向。人們正在嘗試用它們做各種複雜的事情,例如問答、創作、數學推理以及編寫程式碼等。近段時間 ChatGPT 持續的爆火是最好的例證。
然而,對於機器學習從業者來說,大模型的門檻很高:因為體積太大難以訓練,很長時間裡這個方向一直被大公司壟斷。不過最近,簡化 GPT 模型的方法越來越多了。 1 月中旬,前特斯拉AI 高級總監Andrej Karpathy(現已回歸OpenAI)就發布了#從零開始構建GPT 模型的完整教程
##。不過訓練出的 GPT 和 OpenAI 的 GPT-3 比較,兩者規模差距達 1 萬 - 100 萬倍。
近日,加拿大麥克馬斯特大學的一位軟體工程本科生Jay Mody 在導入NumPy 庫下,僅用60 行程式碼就從頭實現了一個GPT 模型,並將其命名為PicoGPT。不僅如此,他還將經過訓練的 GPT-2 模型權重載入到自己的實作中,並產生了一些文字。下面為 60 行程式碼展示。
#不過要做到這些,你需要熟悉Python 和NumPy,還要有一些訓練神經網路的基本經驗。作者表示,這篇部落格旨在對 GPT 進行簡單易懂的完整介紹。因此,作者只使用已經訓練的模型權重來實現前向傳遞程式碼。
#程式碼位址:
https://github.com/jaymody/picoGPT/blob/29e78cc52b58ed2c1c483ffea2eb46ff6bdec785/gpt2_pico.py#L3-L58
值得一提的是,這篇教學不是完全零門檻的。為了讓讀者明白,作者首先介紹了什麼是 GPT、它的輸入、輸出如何等其他內容,介紹得都非常詳細。
###################至於GPT 到底能幹什麼,作者給了幾個範例,它能寫電子郵件、總結一本書、給你instagram 標題的想法、向5 歲的孩子解釋黑洞、用SQL 寫程式碼等。 ############透過仔細閱讀這部分內容後,你能大致了解 GPT 的一些基礎知識。有了這些背景介紹,接下來就是如何設定了。 #########專案介紹############設定###############這一章主要介紹如何設定編碼器、超參數以及參數。 #################################你要做的,首先是複製程式碼庫:####### ###############然後安裝依賴項:######
注意,如果你使用的是 M1 Macbook,在執行 pip install 之前,你需要在 requirements.txt 中將 tensorflow 更改為 tensorflow-macos。在這個專案下,檔案包括encoder.py、utils.py、gpt2.py、gpt2_pico.py:
- encoder.py:包含OpenAI BPE Tokenizer 的程式碼,直接取自gpt-2 repo;
- utils.py:包含下載和載入GPT-2 模型權重、tokenizer 和超參數的程式碼;
- gpt2.py:包含GPT 模型和生成程式碼,可以將其作為python 腳本運行;
- gpt2_pico.py:與gpt2.py 相同,但是程式碼行數更少。
其中gpt2.py 需要從頭開始實現,因此你要做的是先刪除gpt2.py 並重新建立一個空檔案:
然後將下列程式碼複製到gpt2.py 中:
##上述程式碼包含4 個主要部分:
- gpt2 函數是本次實作GPT 的實際程式碼;
- generate 函數實作自迴歸解碼演算法;
- main 函數;
main 函數包含有encode、hparams、params 參數,執行下列程式碼:
接著必要的模型以及tokenizer 檔案將被下載到models/124M 檔案。
設定完成之後,作者開始介紹編碼器、超參數、參數的一些細節內容。就拿編碼器來說,本文的編碼器和 GPT-2 所使用的 BPE tokenizer 一樣。以下是該編碼器編碼和解碼的一些文字範例:
實際的token 長這個樣子:
###要注意,有時token 是單字(例如Not),有時它們是單字但前面有一個空格(例如Ġall,Ġ代表一個空格),有時是單字的一部分(例如capes 被拆分為Ġcap 和es),有時它們是標點符號(例如.)。 ############BPE 的一個好處是它可以對任意字串進行編碼,如果遇到詞彙表中不存在的內容,它會將其分解為它能理解的子字串:#####################更細節的內容不再贅述。接下來介紹基礎神經網絡,這一部分就更加基礎了,主要包括 GELU、Softmax 函數以及 Layer Normalization 和 Linear。 ######
每一小部分都有程式碼範例,例如在Linear 部分,作者展示了標準矩陣乘法偏移:
#線性圖層從一個向量空間投影到另一個向量空間的程式碼如下:
#GPT 架構
這部分介紹GPT 自身架構。
#Transformer 架構如下:
##Transformer 僅使用解碼器堆疊(圖的右側部分):
在高層次上,GPT 體系架構有以下三個部分:
##文字位置嵌入;
- Transformer 解碼器堆疊;
- 投影到詞彙表。
- 程式碼就像下面這樣:
接下來更詳細地分解以上三個部分中的每一個部分,這裡也不再贅述。
以上就是作者對 GPT 的實現,接下來就是將它們組合在一起並運行程式碼,得到 gpt2.py。它的全部內容只有 120 行程式碼(如果刪除註解和空格,則為 60 行)。
作者透過以下方式測試結果:
##輸出結果如下:
#如作者所說的:這次實驗成功了。
本文只是跟著作者的思路大概介紹了整體流程,想要了解更多內容的小夥伴,可以參考原文連結。
原文連結:https://jaykmody.com/blog/gpt-from-scratch/#basic-layers
以上是本科生60行程式碼教你手搓GPT大模型,技術介紹堪比教學的詳細內容。更多資訊請關注PHP中文網其他相關文章!

介紹 恭喜!您經營一家成功的業務。通過您的網頁,社交媒體活動,網絡研討會,會議,免費資源和其他來源,您每天收集5000個電子郵件ID。下一個明顯的步驟是

介紹 在當今快節奏的軟件開發環境中,確保最佳應用程序性能至關重要。監視實時指標,例如響應時間,錯誤率和資源利用率可以幫助MAIN

“您有幾個用戶?”他扮演。 阿爾特曼回答說:“我認為我們上次說的是每週5億個活躍者,而且它正在迅速增長。” “你告訴我,就像在短短幾週內翻了一番,”安德森繼續說道。 “我說那個私人

介紹 Mistral發布了其第一個多模式模型,即Pixtral-12b-2409。該模型建立在Mistral的120億參數Nemo 12B之上。是什麼設置了該模型?現在可以拍攝圖像和Tex

想像一下,擁有一個由AI驅動的助手,不僅可以響應您的查詢,還可以自主收集信息,執行任務甚至處理多種類型的數據(TEXT,圖像和代碼)。聽起來有未來派?在這個a


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)