搜尋
首頁科技週邊人工智慧從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域

一立方毫米,听起来不大,也就是一粒芝麻的大小,但在人类的大脑中,这点儿空间却能够容纳由1.34亿个突触相连接的大约5万条神经线(neural wires)。

为了生成原始数据,生物科学家需要使用连续超薄切片电镜的方法,在11个月内对数以千计的组织碎片进行成像。

而最终获得的数据量也达到了惊人的1.4 PetaBytes(即1400TB,相当于大约200万张CD-ROM的容量) ,对于研究人员来说这简直就是个天文数字。

哈佛大学的分子和细胞生物学家Jeff Lichtman表示,如果用纯手工作业,人类根本不可能手动追踪所有的神经线,地球上甚至都没有足够多的人能够真正有效地完成这项工作。

显微镜技术的进步带来了大量的成像数据,但数据量太大,人手不足,这也是连接组学(Connectomics,一门研究大脑结构和功能连接的学科),以及其他生物领域学科中的常见现象

计算机科学的使命正是为解决这类人力资源不足的问题,尤其是经过优化的深度学习算法,可以从大规模数据集中挖掘出数据模式

麻省理工学院布罗德研究所和哈佛大学剑桥分校的计算生物学家Beth Cimini表示,过去几年中,深度学习在生物学领域有着巨大的推动作用,并开发了很多研究工具。

下面是Nature编辑总结深度学习带来变革的五个生物学图像分析领域

大规模连接组学

深度学习使研究人员能够从果蝇、老鼠甚至人类身上生成越来越复杂的连接体。

这些数据可以帮助神经科学家理解大脑是如何工作的,以及大脑结构在发育和疾病过程中是如何变化的,但神经连接并不容易绘制

2018年,Lichtman谷歌在加州山景城的连接组学负责人Viren Jain联手,为团队所需的人工智能算法寻找解决方案。

连接组学中的图像分析任务实际上是非常困难的,你必须能够追踪这些细线、细胞的轴突和树突,还要跨越很长的距离,传统的图像处理方法在这项任务中会出现很多错误,基本上对这项任务没有用处

这些神经线可能比一微米还细,延伸数百微米甚至跨越毫米级的组织。

深度学习算法不仅能够自动化地分析连接组学数据,同时还能保持很高的精度

研究人员可以使用包含感兴趣特征的标注数据集来训练复杂的计算模型,以便能够快速识别其他数据中的相同特征。

欧洲分子生物学实验室的计算机科学家Anna Kreshuk认为,使用深度学习算法的过程类似于「举个例子」,只要例子够多,你就能把所有问题都解决掉。

但即使是使用深度学习,Lichtman和Jain团队还要完成一项艰巨的任务:绘制人类大脑皮层的片段。

收集数据阶段,仅仅拍摄5000多个超薄的组织切片就花了326天

两名研究人员花了大约100个小时来手动标注图像和追踪神经元,创建了一个ground truth数据集以训练算法。

使用標準資料訓練後的演算法就可以自動將影像拼接在一起,識別出神經元和突觸,並產生最終的連接體。

Jain的團隊為解決這個問題也投入了大量的運算資源,包括數千個張量處理單元(TPU) ,還耗費了幾個月時間來預處理100萬TPU小時所需的資料。

雖然研究人員已經取得到當下能收集到最大規模的資料集,能夠在非常精細的層級進行重建,但這個資料量大約只佔人類大腦的0.0001%

隨著演算法和硬體的改進,研究人員應該能夠繪製出更大的大腦區域,同時能夠分辨出更多的細胞特徵,如細胞器,甚至蛋白質。

至少,深度學習提供了可行性

虛擬組織學

組織學(histology)是醫學上的一個重要工具,用於在化學或分子染色的基礎上診斷疾病。

但是整個過程費時費力,通常需要幾天甚至幾週的時間才能完成。

先將活組織檢查切成薄片,染色顯示細胞和亞細胞特徵,然後病理學家透過閱讀結果並對之進行解釋。

加州大學洛杉磯分校的電腦工程師Aydogan Ozcan認為可以透過深度學習的方式加速整個過程。

他訓練了一個客製化的深度學習模型,透過電腦模擬給一個組織切片上染色,將同一切片上數以萬計的未染色和染色的樣本餵給模型,並讓模型計算它們之間的差異。

虛擬染色除了有時間優勢(瞬間就能完成)外,病理學家透過觀察發現,虛擬染色和傳統染色幾乎毫無區別,專業人士也無法分辨。

實驗結果表明,演算法可以在幾秒鐘內複製乳癌生物標記HER2的分子染色,而這個過程在組織學實驗室通常需要至少24小時

三位乳房病理學家組成的專家小組對這些影像進行了評價,認為它們的品質和準確性與傳統的免疫組織化學染色相當。

Ozcan看到了將虛擬染色商業化後在藥物研發中的應用前景,但他更希望藉此消除組織學對有毒染料和昂貴染色設備的需求。

尋找細胞

如果你想從細胞圖像中提取數據,那麼你必須知道細胞在圖像中的實際位置,這個過程也稱為細胞分割(cell segmentation)。

研究人員需要在顯微鏡下觀察細胞,或是在軟體中一張一張勾勒出細胞的輪廓

加州理工學院的計算生物學家Morgan Schwartz正在尋求自動化處理的方法,隨著成像資料集變得越來越大,傳統的手動方法也遇到了瓶頸,有些實驗如果不自動化就無法進行分析

Schwartz的研究生導師、生物工程師David Van Valen創建了一套人工智慧模型,並發佈在了deepcell.org網站上,可以用來計算和分析活細胞和保存組織影像中的細胞和其他特徵。

從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域

Van Valen與史丹佛大學癌症生物學家Noah Greenwald等合作者一起也開發了一個深度學習模型Mesmer,可以快速、準確地檢測不同組織類型的細胞和細胞核

根據Greenwald說,研究人員可以利用這些資訊來區分癌症組織和非癌症組織,並尋找治療前後的差異,或者基於影像的變化來更好地了解為什麼一些患者會有反應或沒有反應,以及確定腫瘤的亞型。

定位蛋白質

人類蛋白質圖譜計畫利用了深度學習的另一個應用:細胞內定位。

史丹佛大學的生物工程師Emma Lundberg表示,在過去幾十年間,該計畫產生了數百萬張圖像,描繪了人體細胞和組織中的蛋白質表現。

剛開始的時候,專案參與者需要手動對這些圖像進行標註,但這種方法不可持續,Lundberg開始尋求人工智慧演算法的幫助。

過去幾年,她開始在Kaggle挑戰賽中發起眾包解決方案,科學家和人工智慧愛好者為了獎金會完成各種計算任務,兩個項目的獎金分別為3.7萬美元2.5萬美元

參賽者會設計有監督的機器學習模型,並對蛋白質圖譜影像進行標註。

Kaggle挑戰賽獲得的成果也讓專案成員大吃一驚,獲勝的模型表現比Lundberg先前在蛋白質定位模式的多標籤分類方面要高出約20% ,並且可以泛化到細胞系(cell line)中,也取得了新的產業突破,對存在於多個細胞位置的蛋白質進行準確的分類。

從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域

有了模型,生物實驗就可以繼續前進,人類蛋白質的位置很重要,因為相同的蛋白質在不同的地方表現不同,知道一種蛋白質是在細胞核還是在粒線體中,這有助於理解它的功能。

追蹤動物行為

Mackenzie Mathis是瑞士洛桑聯邦理工學院校園生物技術中心的神經科學家,長期以來一直對大腦如何驅動行為感興趣。

為此,她開發了一個名為DeepLabCut的程序,使神經科學家能夠從影片中追蹤動物的姿勢和精細動作,並將「貓咪影片」和其他動物的記錄轉化為數據。

DeepLabcut提供了一個圖形使用者介面,研究人員只需點擊一個按鈕,就可以上傳並標註影片並訓練深度學習模型。

今年4月,Mathis的團隊擴展了該軟體,可以同時為多種動物估計姿勢,這對人類和人工智慧來說都是一個全新的挑戰。

將DeepLabCut訓練後的模型應用到狨猴身上,研究人員發現,當這些動物靠得很近時,它們的身體會排成一條直線,看向相似的方向,而當它們分開時,它們傾向於面對面。

生物學家透過辨識動物的姿勢,來了解兩種動物是如何互動、注視或觀察世界的。

以上是從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
META的新AI助手:生產力助推器還是時間下沉?META的新AI助手:生產力助推器還是時間下沉?May 01, 2025 am 11:18 AM

Meta攜手Nvidia、IBM和Dell等合作夥伴,拓展了Llama Stack的企業級部署整合。在安全方面,Meta推出了Llama Guard 4、LlamaFirewall和CyberSecEval 4等新工具,並啟動了Llama Defenders計劃,以增強AI安全性。此外,Meta還向10個全球機構(包括致力於改善公共服務、醫療保健和教育的初創企業)發放了總額150萬美元的Llama Impact Grants。 由Llama 4驅動的全新Meta AI應用,被設想為Meta AI

80%的Zers將嫁給AI:研究80%的Zers將嫁給AI:研究May 01, 2025 am 11:17 AM

公司開創性的人類互動公司Joi AI介紹了“ AI-Iatsionship”一詞來描述這些不斷發展的關係。 Joi AI的關係治療師Jaime Bronstein澄清說,這並不是要取代人類C

AI使互聯網的機器人問題變得更糟。這家耗資20億美元的創業公司在前線AI使互聯網的機器人問題變得更糟。這家耗資20億美元的創業公司在前線May 01, 2025 am 11:16 AM

在線欺詐和機器人攻擊對企業構成了重大挑戰。 零售商與機器人ho積產品,銀行戰斗帳戶接管以及社交媒體平台與模仿者鬥爭。 AI的興起加劇了這個問題,Rende

賣給機器人:將創造或破壞業務的營銷革命賣給機器人:將創造或破壞業務的營銷革命May 01, 2025 am 11:15 AM

AI代理人有望徹底改變營銷,並可能超過以前技術轉變的影響。 這些代理代表了生成AI的重大進步,不僅是處理諸如chatgpt之類的處理信息,而且還採取了Actio

計算機視覺技術如何改變NBA季后賽主持人計算機視覺技術如何改變NBA季后賽主持人May 01, 2025 am 11:14 AM

人工智能對關鍵NBA遊戲4決策的影響 兩場關鍵遊戲4 NBA對決展示了AI在主持儀式中改變遊戲規則的角色。 首先,丹佛的尼古拉·喬基奇(Nikola Jokic)錯過了三分球,導致亞倫·戈登(Aaron Gordon)的最後一秒鐘。 索尼的鷹

AI如何加速再生醫學的未來AI如何加速再生醫學的未來May 01, 2025 am 11:13 AM

傳統上,擴大重生醫學專業知識在全球範圍內要求廣泛的旅行,動手培訓和多年指導。 現在,AI正在改變這一景觀,克服地理局限性並通過EN加速進步

Intel Foundry Direct Connect 2025的關鍵要點Intel Foundry Direct Connect 2025的關鍵要點May 01, 2025 am 11:12 AM

英特爾正努力使其製造工藝重回領先地位,同時努力吸引無晶圓廠半導體客戶在其晶圓廠製造芯片。為此,英特爾必須在業界建立更多信任,不僅要證明其工藝的競爭力,還要證明合作夥伴能夠以熟悉且成熟的工作流程、一致且高可靠性地製造芯片。今天我聽到的一切都讓我相信英特爾正在朝著這個目標前進。 新任首席執行官譚立柏的主題演講拉開了當天的序幕。譚立柏直率而簡潔。他概述了英特爾代工服務的若干挑戰,以及公司為應對這些挑戰、為英特爾代工服務的未來規劃成功路線而採取的措施。譚立柏談到了英特爾代工服務正在實施的流程,以更以客

AI出了問題嗎?現在在那里為此保險AI出了問題嗎?現在在那里為此保險May 01, 2025 am 11:11 AM

全球專業再保險公司Chaucer Group和Armilla AI解決了圍繞AI風險的日益嚴重的問題,已聯手引入了新型的第三方責任(TPL)保險產品。 該政策保護業務不利

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具